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Introduction and Motivation

In the last century, tremendous progresses have been made in the under-
standing of our Universe. The development of the theory of General Relativ-
ity by Einstein in 1915 gave us the tools to frame a mathematical description
of our Universe; the observations that followed helped us identifying - and
quantifying - the main ingredients of that mathematical framework. What is
nowadays known as the standard cosmological model (or ΛCDM, presented
in Chapter 1 of this thesis) is an incredibly simple yet effective model that
depends on a handful of parameters and that is capable of explaining obser-
vational results spanning almost the whole lifetime of our Universe. These
observational evidences include, for instance, the structure of the cosmic
microwave background, the spatial distribution of galaxies on large scales,
the accelerated expansion of the Universe. Despite its simplicity and effec-
tiveness, however, the standard model is a reminder of our ignorance: in
order to work it needs the addition of two components, the so called “dark
matter” and “dark energy”, which together constitute ∼ 95 per cent of the
total energy-matter budget of our Universe. Their nature and origin are
basically unknown, and investigating them with greater accuracy through
better and more extensive observational campaigns is paramount.

Without any doubt galaxy surveys have been playing a key role fostering
our understanding of the Universe. The spatial distribution of galaxies
as a function of time can be revealing: galaxies are not simply randomly
distributed, but they do cluster, and the amplitude and the characteristic
scale of the clustering depends on the geometry, the growth of structure and
the properties of the components of the Universe.

In recent times, photometric galaxy surveys have become increasingly
popular; not only do they allow to measure galaxy positions, but also to
measure galaxy shapes. This is particularly relevant as it enables the mea-
surement of (weak) gravitational lensing effects, which is the focus of Chap-
ter 2 of this thesis. Gravitational lensing effects manifest themselves when

1
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Last, part IV focuses on how to use weak gravitational lensing and the
DES Y3 shape catalogue to create weak lensing mass maps, i.e., maps of
the mass distribution of the Universe. Chapter 6 discusses different map
making techniques, whereas Chapter 7 presents a simulated cosmological
analysis using the high order moments of the mass maps.
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Part I

Preliminars

This first part contains all the theoretical background needed to understand
the rest of the thesis. We start introducing the cosmological framework,

followed by an introduction to weak gravitation lensing. We then introduce
the Dark Energy Survey and give an overview of some of the main

techniques and challenges to measure the large-scale structure of the
Universe and weak gravitational lensing effects.
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Chapter 1

Cosmological Background

1.1 The cosmological principle and the ex-

panding Universe

According to the “cosmological principle”, the Universe is homogeneous
and isotropic, i.e. there is no preferred direction or preferred position. The
cosmological principle is a statement about reference systems: homogeneity
translates into the invariance of the laws under spatial translations, while
isotropy translates as invariance under rotations of our reference system.
Homogeneity and isotropy are backed up by observations at large scales
(∼ 100 h−1 Mpc), but they start to break down at smaller scales, due to
structure formation.

While the Universe might look the same regardless of the position of the
observer, it does not look the same as time evolves. The “Big Bang Theory”
and the realisation of the expansion of the Universe made that point clear:
the geometry of the Universe is not “static”, but evolves with time, and
with it, distances.

If a homogeneous, isotropic, static Universe would be described by a
Minkowski space-time with a natural choice of coordinate systems ξα =
(−ct, x1, x2, x3), this is no longer the case for an expanding Universe. It is
preferred to introduce the transformation of coordinates1 χi = χi(ξj) such
that (x1, x2, x3) = a(t)(χ1, χ2, χ3), or in vectorial form,

~r = a(t)~χ. (1.1)

1Greek indices run on all the components of the 4-vectors, while roman indices (e.g.,
i) run on the spatial part of the 4-vectors only.
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The factor a(t) is the “scale factor” and describes the homogeneous and
isotropic expansion of the Universe. It is customary to take a(t0) = 1 with
t0 the present time. We shall refer to the spatial part of the new coordinate
systems ~χ as “comoving coordinates”, while we shall refer to the spatial
part of the Minkowski coordinates as “physical” or “proper” coordinates.
The difference between the two systems of coordinates is that comoving
coordinates do not see the expansion of the Universe, i.e. the comoving
distance between two objects is constant with time. This is not true for the
physical distance: two objects with a given physical distance today would
have been closer in the past.

1.2 The FLWR metric

In general relativity, the metric tensor gα,β determines the intrinsic prop-
erties of a metric space2, i.e., it allows to compute the distance between
vectors ~A · ~B ≡ gα,βA

αBβ (where the sum over repeated greek indices is
implicit).

To derive the metric of a given space-time, one should solve Einstein’s
field equations, which also contain information about the energy-density
content of the Universe. Historically, this is not how the metric of the Uni-
verse (the Friedmann-Lemaitre-Robertson-Walker or FLWR metric) was de-
rived. The FLRW metric followed from geometrical considerations on how
to compute distances in a homogeneous, isotropic and expanding space-
time. For a flat Universe, it readily follows from the coordinate transfor-
mation in Eq. 1.1, by considering gαβ = ∂ξα/∂xµξβ/∂xνηαβ with ηαβ =
diag(−1, 1, 1, 1) the metric tensor of the flat Minkowski space-time. For a
curved space-time with curvature K, it reads:

gµν =


−1 0 0 0
0 a2 0 0
0 0 a2fK(χ)2 0
0 0 0 a2fK(χ)2

 , (1.2)

In the above, we adopted spherical coordinates for the spatial part of the
metric ξµ = (ct, χ, θ, φ)3. The term fK depends on the curvature K of the

2A metric space is a set together with a metric on the set. The metric is a function
that defines a concept of distance between any two members of the set (Wikipedia).

3One adopts the following coordinates transformation for the spatial coordinates:
x = aχ sin θ sinφ, y = aχ sin θ cosφ, z = aχ cos θ.
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Universe:

fK =


1√
K

sin
(√

Kχ
)

K > 0

χ K = 0
1√
−K sinh

(√
−Kχ

)
K < 0

(1.3)

In a closed Universe K > 0, whereas in a open Universe K < 0. We note
that the FRLW metric implicitly relies on Weyl’s principle, which states
that in cosmology the world lines of fluids form a spacetime-filling family of
non-intersecting geodesics converging towards the past4.

The FLRW metric breaks down at small scales, due to the failure of the
cosmological principle at scales < 100 h−1 Mpc due to structure formation.
To describe the Universe when it departs from homogeneity, the metric is
usually perturbed (see § 1.6).

1.3 The Standard Cosmological Model

1.3.1 Friedmann Equations

The cosmological principle, together with the Friedmann equations, are the
pillars of the Standard Cosmological model. The two Friedmann equations
directly stem from the Einstein field equations once the FLRW metric (and,
therefore, the cosmological principle) is assumed. We start from the Einstein
field equations:

Gµν =
8πG

c4
Tµν . (1.4)

The Einstein equations pinpoint the interplay between the geometry of
space-time (left-hand side) and its energy content (right-hand side). In
particular, in Eq. 1.4, Gµν is the Einstein tensor, which depends on the
geometry of the space time (i.e., the metric), and Tµν is the stress-energy
tensor, which depends on the energy content of the space-time and it de-
scribes the source of the gravitational field. The Einstein tensor is better
expressed in terms of the Ricci curvature tensor Rµν and the Ricci scalar R:

Gµν = Rµν −
1

2
gµνR + Λgµν . (1.5)

4In other terms, this implies that the world lines should be everywhere orthogonal
to a family of spatial hyperslices. This imposes g0i = 0. The cosmological principle,
together with the spatial curvature of the Universe, take part in modelling the spatial
part of the metric. For a historical introduction to Weyl’s principle in Cosmology see,
e.g., Rugh & Zinkernagel (2010).
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The Ricci tensor is linear in the second derivatives of the metric gµν and
non linear in the first derivatives5. The Ricci scalar R is defined as R = Rα

α.
Finally, Λ is a constant term that in Cosmology has a specific role, and it
is referred to as the “cosmological constant”6.

In our case, the Einstein tensor Gµν is fully determined by the choice of
the FLRW metric. The Ricci tensor has as components:

R00 = −3
c−2ä(t)

a(t)
, (1.6)

R0i = 0, (1.7)

Rij =
c−2ä(t)a(t) + 2c−2ȧ(t)2 + 2K

a(t)2
gij. (1.8)

In the above equations, the symbol “ ˙ ” refers to the differentiation with
respect to physical time t. We note that R0i = 0 is a consequence of Weyl’s
principle, and Rij ∝ gij stems from having assumed isotropy and homogene-
ity. As for the Ricci scalar, it reads:

R = 6
c−2ä(t)a(t) + c−2ȧ(t)2 +K

a(t)2
. (1.9)

The stress-energy tensor behaves similarly to the Ricci tensor in terms of
components. Its formal definition for a homogeneous and isotropic fluid at
equilibrium is:

Tαβ = [ρ(t)c2 + p(t)]uαuβ + p(t)gαβ, (1.10)

with p(t) being the pressure, ρ(t) the density and uα = dxα

cdτ
the 4-velocity7.

Since in an inertial, comoving frame uα = (1, 0, 0, 0), it follows that the
components of the stress-energy tensor are:

T00 = ρ(t)c2, (1.11)

5Ricci tensor is formally defined as the contracted form of the Riemann tensor Rαµβν ,
i.e. Rµν = gαβRαµβν . The Riemann tensor is also referred to as the curvature tensor,
as it vanishes in a flat spacetime. Its dependence on the derivatives of the metric can be
understood looking at its definition: Rαβµν = Γαβν,µ − Γαβµ,ν − ΓακνΓκβµ + ΓακµΓκβν , where

we have introduced the Christoffel’s symbols Γαβν = 1
2g
νσ [gµν,λ + gλν,µ − gλµ,ν ]. The

notation “,λ” indicates differentiation with respect to the variable xλ.
6This nomenclature is used specifically in Cosmology. More generally, Einstein field

equations always admit the additional term Λgµν under the condition of Λ to be small,
such that the 00 component of the equations in the weak field limit reduces to the
Newtonian case.

7τ is the proper time defined as dτ2 = gµνdx
µdxν .
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T0i = 0, (1.12)

Tij = p(t)gij. (1.13)

We can now derive the Friedmann equations, which relate the geometry of
the Universe to its content in the framework of General Relativity. The first
Friedmann equation corresponds to the 00 component of the Einstein field
equation:

−3
c−2ä(t)

a(t)
+ 3

c−2ä(t)a(t) + c−2ȧ(t)2 +K

a(t)2
− Λ =

8πG

c2
ρ(t), (1.14)

ȧ(t)2

a(t)2
=

8πG

3
ρ(t) +

Λc2

3
− Kc2

a(t)2
. (1.15)

We can now introduce the Hubble rate

H(t) ≡ ȧ(t)

a(t)
, (1.16)

which is defined as the rate of expansion of the Universe. With this defini-
tion, the first Friedman equation reads:

H(t)2 =
8πG

3
ρ(t) +

Λc2

3
− Kc2

a(t)2
. (1.17)

This equation shows how the expansion rate of the Universe is determined
by both the geometry of the Universe and its total energy density ρ(t).

The second Friedman equation follows from the spatial components of
the Einstein field equations:(

−2
c−2ä(t)

a(t)
− c−2ȧ(t)2 +K

a(t)2
+ Λ

)
gµν =

8πG

c4
p(t)gµν , (1.18)

which, combined with Eq. 1.15, leads to

ä(t)

a(t)
= −4πG

3

(
ρ(t) +

3p(t)

c2

)
+

Λc2

3
. (1.19)

In the Einstein field equations, the cosmological constant Λ has been intro-
duced as part of the Einstein tensor, on the left-hand side of Eq. 1.4; in
this respect, it can be interpreted as an intrinsic geometrical feature of the
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space-time. However, we can also incorporate it in the energy content of
the Universe by the following transformation:

ρ(t)→ ρ(t) +
Λc2

8πG
(1.20)

p(t)→ p(t)− Λc2

8πG
(1.21)

This is equivalent to consider the cosmological constant as a “fluid” with
density ρΛ and pressure pΛ, such that pΛ = −ρΛc

2. We can rewrite the
Friedmann equations as:

H(t)2 =
8πG

3
ρ(t)− Kc2

a(t)2
, (1.22)

ä(t)

a(t)
= −4πG

3

(
ρ(t) +

3p(t)

c2

)
. (1.23)

Eq. 1.23 is also referred to as “acceleration equation”, and it indicates that
the acceleration of the expansion of the Universe is determined both by
the energy density and the pressure of the fluids filling the Universe. In
particular, the relation between density and pressure (determined by the
equation of state) is crucial: depending on the signs of ρ(t) and p(t), the
acceleration of the Universe can be either positive ore negative (i.e. it would
be a deceleration8).

Finally, at any moment of the cosmic time, we can also define a “critical
density”, which is the density needed for the Universe to be flat (K = 0):

ρcrit ≡
3H(t)2

8πG
. (1.24)

We note that in the density term ρ we included all the forms of matter
and energy present in the Universe, as we will specify better in the next
subsection.

1.3.2 Energy Evolution

The stress-energy tensor describes the energy content of the Universe. In
general relativity, it obeys the following conservation law:

T µν;µ ≡ T µν,µ + ΓµαµT
α
µ − ΓµαµT

α
µ = 0, (1.25)

8One can define a “deceleration parameter” q0 ≡ −ä(t0)/(a(t0)H2
0 ). Current con-

straints from type Ia supernovae show that q0 ≈ −0.6, hence the Universe expansion is
accelerating.
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where Γµαµ are Christoffel’s symbols. The ν = 0 component of the above sys-
tem of equations is equivalent to the continuity equation, while the spatial
part is equivalent to the Euler equation. Let us focus on the ν = 0 compo-
nent. By substituting the non-vanishing Christoffel’s symbols, it reads:

∂ρ

∂t
+ 3

ȧ

a

(
ρ+

P

c2

)
= 0. (1.26)

The continuity equation allows to derive the evolution of the energy density
with time. In cosmology, we approximate all the components of the Universe
by fluids obeying a simple equation of state:

p(t) = wρ(t)c2, (1.27)

with w constant. Such equation of state is normally used to describe diluted
fluids with no torsion. The continuity equations can be therefore rewritten
as:

dρ

ρ
= −3(1 + w)

da

a
. (1.28)

Solving the continuity equation and the Friedmann equations, assuming the
Universe is made up of only one fluid obeying a simple equation of state,
leads to:

ρ(a) = ρ0a
−3(1+w), (1.29)

a(t) = a0t
2/[3(1+w)]. (1.30)

Depending on the equation of state, the density and scale factor have a differ-
ent evolution with cosmic time. The standard cosmological model considers
as constituents of our Universe the following:

• non-relativistic massive particles, where non relativistic means their
random thermal motion is much slower than the speed of light. Such
fluid follows the law of a perfect gas:

P =
ρ

µ
kBT =

ρ〈v2〉
3
→ w =

〈v2〉
3c2
≈ 0, (1.31)

where kB is the Boltmann’s constant and µ is the average atomic
weight of the gas considered. This equation follows from the relation
between the temperature T of the gas and its thermal velocity v:
3kT = µ〈v2〉. This implies that non-relativistic fluids are characterised
by an equation of state with w = 0. Non-relativistic matter includes
baryonic and dark matter, and it will be referred to generically as
“matter”.
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• Relativistic, massless particles. Photons and other massless particles
are characterised by

P =
ρc2

3
→ w =

1

3
. (1.32)

We will refer to relativistic particles as “radiation”.

• Dark energy. It is defined as a substance characterised by an equation
of state:

P = wρc2, with w < 1/3. (1.33)

Dark Energy causes the Universe to expand, as it would cause the
sign of the right-hand side of the acceleration equation (Eq. 1.23) to
be positive. The cosmological constant Λ, with w = −1, is a special
case of dark energy.

Using (Eq. 1.29), we can compute the evolution of each component of the
Universe:

p = wρc2


Matter wm = 0 ρm = ρm,0a

−3

Radiation wr = 1
3

ρr = ρr,0a
−4

Λ wΛ = −1 ρΛ = ρΛ,0

Dark Energy wde = w(a) < −1
3

ρde = ρde,0a
−3[1+w(a)]

(1.34)
The standard cosmological model includes, as components of the Universe,
matter (mostly cold, non-relativistic dark matter), radiation and dark en-
ergy in the form of the cosmological constant, and it is referred to as the
ΛCDM model, which is considered the benchmark model in cosmology. Due
to the different evolution of these components, the Universe has seen differ-
ent “epochs” where each of this component was the dominant constituent
of the Universe (see Fig. 1.1).

If a more general form of dark energy than Λ is considered, the model
is referred to as wCDM model. In the most general form, the dark energy
equation of state can assume any parametric form w(a), but it is usually
described in terms of the lowest order Taylor expansion of w(a):

w(a) = w0 + (1− a)wa +O(1− a)2. (1.35)

We can now solve the first Friedmann equation (Eq. 1.17) for a generic
wCDM Universe:

H2 = H0

(
Ωm0

a3
+

Ωr0

a4
+

Ωde0

a3[1+w(a)]
+

ΩK

a2

)
, (1.36)
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Figure 1.1: Density evolution for the different components of the Universe in a ΛCDM
model. The dots represent the values of the density as measured today. Source:
http://people.virginia.edu/dmw8f/

having defined the cosmological parameters Ωi as:

Ωi ≡
ρi,0
ρcrit,0

, (1.37)

and ρK = Kc2

H2
0

= ρ0−ρcrit,0, where ρ0 = ρm,0 +ρr,0 +ρde,0 is the total density

today (by definition, in a flat Universe, ρ0 = ρcrit,0). The parameters Ωi

form a minimum set of “cosmological parameters” that describe the Uni-
verse content today. The goal of modern cosmology is to measure these
parameters to exquisite precision. Current experiments placed percent-level
constraints on many of those (Table 1.1). In the next years the level of accu-
racy of the measurement of these parameters will further increase, helping
shed light on the nature of dark matter and dark energy, which is still one
of the fundamental questions in cosmology today.
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Table 1.1: Cosmological parameters from Planck (Planck Collaboration, 2018). The
parameter h is the Hubble constant H0 in units of 100 km/s/Mpc. The total matter Ωm,0
is further divided into a dark matter only component and a baryonic Ωb,0 component. The
radiation density is computed from the temperature of the CMB T = 2.7255± 0.0006K
and it is usually considered fixed in cosmological analysis (due to the high precision of
its measurement). The curvature parameter value has been obtained combining Planck
data with the data from BAO.

parameter Planck TT,TE,EE+lowE+lensing
h 0.674 ± 0.005

Ωm,0 0.315 ± 0.007
Ωb,0h

2 0.0224 ± 0.0001
ΩΛ,0 0.685 ± 0.007
Ωr,0 4.18343 ·10−5

ΩK 0.0007 ± 0.0019 (+BAO)

1.4 Distances

1.4.1 Redshift in Cosmology

The term “redshift” refers to a phenomenon where electromagnetic radiation
emitted from an object is subject to an increase in wavelength (as opposed
to “blueshift”, where the wavelength diminishes). It is formally defined as
the fractional difference between the observed and emitted wavelengths:

1 + z ≡ λo

λe

. (1.38)

Every cosmological object, except for the ones in our neighbourhood where
peculiar velocity is dominant with respect to the cosmological expansion,
are subject to redshift. This is a consequence of the Doppler effect: because
of the expansion of the Universe, every objects is receding from us, thus
causing the light emitted to become redder to the observer.

Given a distant galaxy, the comoving distance travelled by light is:

χ =

∫ to

te

c
dt

a(t)
. (1.39)

Suppose now that the light is emitted with wavelength λe and observed with
wavelength λo. As the distance travelled by two wave crests is the same, it
follows that: ∫ to

te

c
dt

a(t)
=

∫ to+λo
c

te+λo
c

c
dt

a(t)
, (1.40)
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which can be re-written subtracting the quantity
∫ to
te+λe

c
c dt
a(t)

:

∫ te+λe
c

te

c
dt

a(t)
=

∫ to+λe
c

to

c
dt

a(t)
. (1.41)

Each integral is computed over the time passed between two wave crests,
at the position of the emitter and the observer. In such a small fraction of
time, one can consider a(t) constant, as the Universe did not have enough
time to expand. It follows that:

λe
a(te)

=
λo
a(to)

. (1.42)

Following the definition of redshift (Eq. 1.38), and that the scale factor at
present time is assumed to be a(to) = 1, it follows that:

1 + z =
1

a(t)
. (1.43)

This last equation relates the redshift to the scale factor of the Universe; in
other words, observing shifts in the spectral lines of distant object reveals
the relative size of the Universe at the time the light was emitted.

1.4.2 Angular diameter and luminosity distance

In cosmology, there exist different ways to estimate the distance of an object.
The choice of coordinate system defined in § 1.1 naturally suggests the use
of the comoving distance (which remains constant as the Universe expands)
as fundamental distance. The comoving distance can be related to redshift
if the expansion of the Universe, described by H(z), is known. It follows
from Eq. 1.39 and Eq. 1.43 that the distance of an object located at a scale
factor a is:

χ(a) =

∫ to

t(z)

c
dt

a(t)
=

∫ 1

a

c
da

a2H(a)
=

∫ z

0

c
dz

H(z)
, (1.44)

where we also used the definition of the Hubble constant H(z) (Eq. 1.16).
Unfortunately, we cannot directly measure the comoving distance of an ob-
ject from observations. Usually, the comoving distance of an object is in-
ferred from its redshift and once the cosmological model (and its parameters)
are known.
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Figure 1.2: Angular diameter, luminosity
and comoving distance as a function of red-
shift for a Planck cosmology.

If we knew a priori the size or
the luminosity of an object, how-
ever, we could estimate more di-
rectly its distance from us. In par-
ticular, it is useful to introduce two
other distances, the “angular diam-
eter distance” and the “luminosity
distance”, which are more directly
constrained by observations.

Let us assume we know the phys-
ical size9 ` of an object and that,
when we observe it, it subtends an
angle ∆θ in the sky. Its size can also
be expressed as the infinitesimal line
element between the extremities of
the object:

` =
√
ds2 = a(te)fK(χe)∆θ, (1.45)

where we assumed dt = dφ = dχ = 0. We define the angular diameter
distance as:

DA ≡
`

∆θ
= a(te)fK(χe), (1.46)

which becomes:

DA =
fK(χe)

1 + ze
. (1.47)

We remind that for a flat Universe, fK(χe) → χe , such that DA = χe
1+ze

.
The angular diameter distance is very similar to the comoving distance at
low redshift, but it decreases by a factor 1 + z at high redshift. In a flat
Universe, this implies that objects at high redshift appears larger than if
they were located at intermediate redshift.

The other useful distance in cosmology is the “luminosity distance”,
which comes into play whenever the luminosity of an object is known a
priori. In a Minkwoski Universe, the luminosity of an emitting source and
the measured flux are related by:

F =
L

4πd2
e

, (1.48)

9We assume ` to be the size of the object in the plane perpendicular to the line of
sight.
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were de is the distance to the emitting source10. In an expanding Universe,
however, both the distance and the luminosity vary as a function of cosmic
time. The luminosity, in particular, varies because the energy of the photons
will be smaller by a factor 1 + z since their emission due to the Universe
expansion; moreover, the number of photons crossing a shell in a fixed time
will also be smaller by a factor 1 + z for the same reason11. The relation
between the luminosity at the time of emission and at the time of observation
is:

Le = Lo(1 + z)2. (1.49)

Since the area of a sphere at comoving distance χ(a) is S = 4πfK(χ)2, the
relation between observed flux and luminosity at the emission is:

F =
Le

(1 + z)24πfK(χ)2
=

Le
4πD2

L

. (1.50)

With the luminosity distance DL defined as:

DL ≡ (1 + z)fK(χ). (1.51)

For a flat Universe, the luminosity distance readsDL ≡ (1+z)χ. Luminosity,
angular diameter and comoving distances as a function of redshift are shown
in Fig. 1.2

1.5 The cosmic microwave background

One of the consequences of the expansion of the Universe is that the Universe
must have been much smaller in the past. This means that the Universe
was also hotter than what it is today. Indeed, photons filling in the Universe
are in thermal equilibrium at a given temperature T and are described by
a Bose-Einstein distribution, which implies the following relation between
the photons energy density and their temperature:

ρr ∝ T 4
γ . (1.52)

10This relations stems from the fact that the luminosity is defined as released energy
per unit time L ≡ dE

dt , while the flux is released energy per unit time per unit area

F ≡ dE
dtdA . Since the area considered here is a spherical shell around the source, Eq. 1.48

follows.
11First, one can note that the energy dE of a packet of photons is proportional to its

frequency ν and inversely proportional to its wavelength λ. It follows from the definition
of redshift that 1 + ze = λo

λe
= νe

νo
= dEe

dEo
. Also, the relation between frequency and time

interval implies νodto = νedte and 1 + ze = dto
dte

.
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Figure 1.3: Intensity of CMB radiation as a function of wavelength and frequency for the
COBE FIRAS experiment Mather (1994), and the best fit black body spectrum. Error
bars are magnified by a factor of 400 in the plot.

As radiation evolves ρr ∝ a−4 (Eq. 1.34), it follows that the radiation filling
the Universe must have been hotter in the past:

Tγ(a) =
Tγ,o
a
. (1.53)

In the past, the temperature was high enough that photons were able to
ionise light-weight atoms as hydrogen or helium, and the Universe was filled
by a hot ionised plasma of particles and radiation. In such a hot plasma,
ionised atoms were coupled with radiation through Thomson scattering,
which implies that the mean free path for photons was extremely short,
effectively making the Universe opaque. Moreover, any newly formed hy-
drogen atom was immediately ionised by ambient photons. In such state,
photons were effectively at thermodynamic equilibrium, which means their
radiation could be completely characterised by a black body spectrum. As
the Universe expanded, the temperature of the radiation dropped enough
that ambient photons were no longer able to ionise hydrogen. As a result,
the mean free path of photons increased, effectively making the Universe
transparent. The leftover of this ancient radiation coming from the early
Universe was firstly observed by Penzias & Wilson (1965) in a single wave-
length in the microwave range, and it has been referred since then as the
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“Cosmic Microwave Background” (CMB). The confirmation that the CMB
had a black body spectrum arrived with the launch of COsmic Background
Explorer (COBE), which extended the measurement to a wide range of
wavelengths (Fig. 1.3, Mather 1994), making it one of the observational
pillars of the Big Bang theory.

Figure 1.4: Anisotropies in the CMB tem-
perature map (the color scales highlight fluc-
tuations of the order 105), as observed with
increasing resolution by COBE,WMAP and
Planck.

After COBE, the CMB has
been observed with greater accu-
racy by WMAP and more recently
by Planck. It is now consolidated
that the CMB radiation is a relic
of the last scattering surface, which
took place when the Universe was
roughly 400,000 years old (z ≈
1100). The measured blackbody
spectrum agrees with the one of ra-
diation in thermal equilibrium at
To = 2.72548 ± 0.00057K (Fixsen,
2009), which corresponds to a tem-
perature of ∼ 3000K at the time of
last scattering (Eq. 1.53).

The CMB constitutes the most
perfect black body spectrum in na-
ture, and it is perfectly homoge-
neous and isotropic at the percent
level. Beyond the CMB monopole,
however, the CMB is characterised
by a number of anisotropies that
carry a wealth of cosmological infor-
mation. First of all, there exists an
anisotropy of 1 part in 103 caused
by the motion of Earth with respect
to the CMB rest frame. This shows
up as a dipole anisotropy, as one of

the hemispheres of the CMB is slightly blueshifted (i.e., it is at higher tem-
perature) and the other slightly redshifted (i.e., it is at lower temperature).
Beyond this dipole anisotropy, further distortions appear at the level of 1
part in 105. These anisotropies are shown in Fig. 1.4, as observed with in-
creasing resolution by COBE (Smoot, 1992), WMAP (Bennett, 2015) and
Planck (Planck Collaboration, 2019). The origins of such fluctuations have
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to be found in the quantum fluctuations in the very early stages of the Uni-
verse, and eventually led to the structures (galaxies, clusters of galaxies,
filaments, etc.) we see today, through the process of gravitational collapse
(generally referred to as structure formation). The statistical study of CMB
anisotropy has been particularly prolific in the last two decades, as the CMB
contains a wealth of cosmological information, providing accurate estimates
of the cosmological parameters from the early moments of the Universe.
In our standard cosmological model, the values of such parameters should
not be different from the ones measured at later times. From this point
of view, cosmological inferences from late Universe observables (like weak
lensing) are particularly valuable, as they allow to stress-test the standard
cosmological model at a different time of the life of the Universe.

1.6 Structure formation

The cosmological principle states the Universe is homogeneous and isotropic
on large scales. This assumption (supported by observational evidences)
clearly no longer holds on small scales: if we just look at our neighborhood
(in space), we can see a large variety of galaxies of different sizes and masses.
The presence of structures as galaxy groups, clusters or galaxy voids, or the
CMB anisotropies we discussed above are clear examples of the break down
of the cosmological principle on small scales.

The origin of the structures we see today dates back to the origin of the
Universe, when the only inhomogeneities in the density field were on micro-
scopic scales, due to quantum fluctuations. Such fluctuations are believed to
have grown exponentially during the Inflationary epoch12 (Guth, 1981). In-
deed, without inflation, the microscopic quantum fluctuations would not be
large enough to explain the amplitude of the CMB anisotropies we observe.

12The term “inflation” refers to a mechanism which is believed to have caused an
accelerated expansion of the Universe during its early life. The inflationary theory has
been developed to explain three major problems in Cosmology: the “flatness” problem
(i.e., the fact our Universe is substantially flat), “the monopole problem” (i.e. the fact
we do not observe magnetic monopoles in our Universe), and the “horizon problem” (i.e.,
the fact that the Universe observed at the time of the CMB is homogeneous and isotropic
on very large scales that, without inflation, would have never been in casual contact with
each other).
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1.6.1 Linear evolution

The evolution of primordial inhomogeneities through cosmic time led to the
structures we see today in the Universe. Describing the evolution of such
fluctuations can be very complex at small scales, whereas at large scales it
can be reasonably described by a linear theory. Most of the cosmological
analyses take advantage of the large-scale regime, where linear theory can
be used, and only marginally use small scales, due to the complex modelling
of the observables.

For the case of a perfect fluid, a fluctuation δρ can grow according to
the “gravitational Jeans instability”: if the self-gravity of the fluctuation
overtakes the stabilising effect of pressure, it will grow with time (in the
sense that δρ will increase13).

The linear evolution of fluctuations can be obtained by perturbing the
FLRW metric and the stress-energy tensor, and combining together the con-
tinuity equation, the Euler equation and the Poisson equation. Let us define
the perturbed metric, perturbed 4-velocity and perturbed stress-energy ten-
sor:

gµν =


−(1 + 2Φ

c2
) 0 0 0

0 a2(1− 2Φ
c2

) 0 0
0 0 a2fK(χ)2(1− 2Φ

c2
)

0 0 0 a2
K(χ)2(1− 2Φ

c2
)

 .

(1.54)

uα =

(
1− Φ

c2
,
vi

a

)
, (1.55)

T00 = δρc2, Tii = δp, T i0 = (ρc2 + p)vi, (1.56)

where Φ is the Newtonian potential of the perturbation14, vi the peculiar
velocity with respect to the expansion of the Universe, and δρ and δp per-
turbations to the density and pressure. Assuming stationarity (gαβ,0 = 0,

13One can have a rough idea of the phenomenon for a collisional fluid by defining the
self-gravitation per unit mass force of a fluctuation of mass M and size λ as Fg ∼ GM

λ2 ∼
Gρλ and the pressure per unit mass as Fp ∼ pλ2

ρλ3 ∼ v2s
λ with vs speed of sound. By

imposing Fg > Fp, one can see that fluctuations of scales λ > vs√
Gρ

will increase. For a

collisionless fluid (i.e., dark matter), vs is substituted by v∗, the mean velocity dispersion
of the fluid.

14The most general metric perturbed by scalar fields would be gαβ =
diag

[
−
(
1 + 2Ψ

c2

)
, a2

(
1− 2Φ

c2

)
, a2fK(χ)2

(
1− 2Φ

c2

)
, a2fK(χ)2

(
1− 2Φ

c2

)]
; however, in Gen-

eral Relativity, Ψ = Φ.
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Φ,0 = 0), at first order the continuity and Euler equations15 become:

u0(ρ+ δρ),0 = −
(
ρ+ δρ+

p+ δp

c2

)(
u0vi,i
a

+ 3u0H

)
, (1.57)

δp,i
a

= −
(
ρ+ δρ+

p+ δp

c2

)(
Hvi + vi,0 +

Φ,i

a

)
. (1.58)

Keeping only the first-order terms we obtain:

ρδ,0 = −
(
ρ+

p

c2

)(vi,i
a

)
, (1.59)

δp,i
a

= −
(
ρ+

p

c2

)(
Hvi + vi,0 +

Φ,i

a

)
. (1.60)

We can also write the 00 component of the perturbed Einstein equations
(which can be interpreted as the general relativity version of the Poisson
equation):

Φ,i,i = 4πGa2

(
δρ+ 3

δp

c2

)
. (1.61)

To obtain the equation describing the time evolution of fluctuations, we
need to make explicit the equation of state of the fluid (p = p(ρ)), take the
time derivative of Eq. 1.59 and combine with Eqs. 1.60, 1.61. For a dark
matter dominated Universe, we obtain:

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0. (1.62)

This differential equation has two solutions, one growing with time and one
decaying. As we are interest in the growing mode, the general solution is
usually written as:

δ(~x, t) =
D(t)

D(t0)
δ(~x, t0), (1.63)

with D(t) the “growth factor”, which depends on the cosmological parame-
ters. The above solution holds only when the Universe is completely made
(or dominated) of dark matter: in practice, we would need to consider all
the different components at the same time.

15The Euler equation is the spatial part of the stress-energy conservation law
(Eq. 1.25).
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1.6.2 Statistics of the matter density field

No theory can predict the exact value of the dark matter density field at
every point of the space time, as the observable Universe is just one possible
realisation of a random density field. We can, however, describe the prop-
erties of the random field: this can be achieved, for instance, measuring all
the N-point correlation functions of the field. The first two relevant N-point
correlation function are the 2-point and 3-point correlation functions (since
the mean value of the density fluctuation field is expected to vanish):

ξ(~x, ~y) ≡ 〈δ(~x), δ(~y)〉 = ξ(|~x− ~y|), (1.64)

ζ(~x, ~y, ~z) ≡ 〈δ(~x), δ(~y), δ(~z)〉 = ζ(|~x− ~y|, |~y − ~z|). (1.65)

The 2-point (3-point) correlation function represents the probability of hav-
ing two (three) density fluctuations δ(~x), δ(~y) (δ(~z)) at two (three) different
locations with respect to a random distribution. The correlation functions
depend on distance differences only due to the cosmological principle16. In
the above equations, 〈·〉 should formally be the “ensemble average”: as we
can only observe one Universe, this is substituted by a spatial average, due
to the ergodic hypothesis17.

Correlation functions are usually predicted from theoretical arguments
starting from their Fourier transforms. We define the Fourier transform of
the density contrast:

δ̃(~k) =

∫
d3kδ(~x)e−i

~k~x. (1.66)

δ(~x) =
1

(2π)3

∫
d3kδ̃(k)ei

~k~x, (1.67)

The Fourier transform of the 2-point and 3-point correlation functions read:

ξ(|~x− ~y|) =

∫
d3kP (|~k|)ei~k|~x−~y|, (1.68)

16We note that the cosmological principle holds as long as perturbation to the metric
2Φ
c2 are small. Density fluctuations δρ

ρ can be larger than unity without violating the

cosmological principle, as they are related to perturbations of the metric as Φ
c2 ∼

λ
ct
δρ
ρ ,

with λ the scale of the perturbation. Basically, unless we considered perturbations on
scales comparable to the cosmological horizon ∼ ct, the cosmological principle would still
hold.

17This also means that the largest scales observable will be necessarily dominated by
the variance of the field (referred to as “cosmic variance”), as we do not have enough
realisations to average over.
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ζ(|~x− ~y|, |~y − ~z|) =
1

(2π)3

∫
d3k

∫
d3k′B(|~k|, |~k′|)ei(~k|~x−~y|+~k′,|~y−~z|, (1.69)

where P (k) and B(k, k′) are the power spectrum and the bispectrum, which
obey the following relations:

〈δ̃(~k)δ̃(~k′)〉 = (2π3)δD(~k − ~k′)P (|~k|), (1.70)

〈δ̃(~k)δ̃(~k′)δ̃( ~k′′)〉 = (2π3)δD(~k − ~k′ − ~k′′)B(|~k|, |~k′|), (1.71)

with δD the Dirac delta function.
The inflationary theory predicts that primordial fluctuations were mostly

described by a Gaussian random field, and that the primordial power spec-
trum did not depend on a characteristic scale, i.e.:

P0(k) = Ask
ns , (1.72)

with ns the power spectrum index. The inflationary theory predicts ns
to be very close to unity, with the latest measurement from Planck being
ns = 0.9649 ± 0.0042 (TT + LowP, Planck Collaboration 2019). As long
as the primordial density field is Gaussian, the primordial bispectrum (or,
equivalently, the 3-point correlation function), does not add any valuable
information to the 2-point correlation function. Indeed, the primordial bis-
pectrum can be used as a test for primordial non Gaussianity (Meerburg
et al., 2019).

The amplitude of the power spectrum cannot be predicted by theory,
and it is usually constrained by observations. The amplitude is usually
parameterised in terms of the quantity σ8, which represents the square root
of the variance of the density field in spheres of radius 8 h−1 Mpc scattered
throughout the Universe:

σ2
R =

1

2π2

∫
dkk2P (k, z = 0)

[
3j1(kR)

kR

]2

, (1.73)

with R = 8h−1 Mpc, P (k, z = 0) the power spectrum at present time and j1

the spherical Bessel function of order 1. In practice, this implies the power
spectrum has been smoothed using a spherical top-hat window function.

The matter power spectrum and bispectrum today are usually connected
to the primordial power spectrum and bispectrum through the transfer func-
tion T (k, z):

P (k, z) = T (k, z)2P0(k), (1.74)
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B(k, z) = T (k, z)3B0(k), (1.75)

with the redshift part of the transfer function that can be expressed as:

T (k, z) =
D(z)

D(z = 0)
a(z)T (k), (1.76)

with D(z) the growth factor introduced in Eq. 1.63. The transfer function
encodes all the effects18 that modify the linear growth of structures at dif-
ferent scales. It can be obtained by solving the equivalent of Eq. 1.62 but
considering all the different components of the Universe (baryons, radia-
tion, dark matter, dark energy). For a ΛCDM Universe, the resulting power
spectrum and bispectrum correspond to a bottom-up scenario, where small
structures form first and, by merging, subsequently form bigger structures.

1.6.3 Non-linear evolution

At small scales, the growth of fluctuations cannot be described by a linear
theory. As soon as fluctuations are larger than δ & 1, linear theory becomes
inadequate: the gravitational collapse proceed faster, and structures decou-
ple from the evolution of the rest of the Universe, which proceeds following
the linear theory. The standard approach to understand the non-linear evo-
lution follows the “spherical collapse” model (Press & Schechter, 1974; Mo
& White, 1996). Fluctuations δ exceeding a critical value δc form a bound
structure that with time merges with neighbouring structures, forming big-
ger halos according to a hierarchical formation model. In this framework,
baryons are caught by the gravitational potential of dark matter halos, ini-
tially in the form of hot spherical gaseous structures. Due to several cooling
processes, these hot spherical gas structures collapse to cold proto-galactic
disks, fostering the onsets of star forming processes.

The non-linear evolution is very complicated to predict from theoreti-
cal principles. Generally, it is common to use analytical fitting formulae
obtained from high-resolution N-body simulation suites that encompass a

18Depending on the era of the Universe, we have: 1) the Meszaros effect, which is the
stagnation of fluctuations of pressureless fluid (i.e. dark matter) during the radiation
dominated era; 2) acoustic oscillations, when fluctuations do not grow due to pressure;
3) Silk damping, which consists in a damping on small scales due to diffusing photons;
4) free-streaming, which represents the damping on small scales due to non-zero velocity
of dark matter; 5) radiation drag, which represents a stagnation that affects isother-
mal baryonic modes (i.e, modes that only involve matter density fluctuations, with the
radiation field assumed to be uniform) prior to matter-radiation equality.
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large number of different cosmological models. Such formulae exist both
for the power spectrum (Takahashi et al., 2012) and for the bispectrum
(Takahashi et al., 2019).

1.6.4 The galaxy 2-point and 3-point correlation func-
tions

In the previous subsection we described the main statistical properties of
the matter density field. The dark matter (which is the main constituent of
the matter field), however, is not directly observable: what we can directly
observe, with our telescopes, is the light emitted by galaxies. Galaxies
naturally fall in the gravitational potential of dark matter halos, and are
therefore considered (biased) “tracers” of the dark matter density field. We
can follow the previous subsection and define a galaxy 2-point (3-point)
correlation function and the relative galaxy power spectrum (bispectrum).
This has to be interpreted as the probability over random to find a pair (or
triplet) of galaxies at a given angular separation:

dP = n̄2 [1 + ξg(|~x− ~y|)] dV1dV2, (1.77)

dP = n̄3 [1 + ξg(|~x− ~y|) + ξg(|~x− ~z|) + ξg(|~z − ~y|)+
ζg(|~x− ~y|, |~y − ~z|)dV1dV2dV3. (1.78)

The galaxy N-point statistics are related to the matter N-point statistics
through the so called “galaxy bias”, which quantifies how a given population
of galaxies trace the underlying matter distribution. The relation between
galaxy and matter overdensities can be expressed as:

δg = bδ, (1.79)

with b(z) the galaxy bias, which can depend on the tracer population, on
redshift and on the scale of the fluctuation considered. For a given tracer
population and fixed redshift, at sufficiently large scales the bias becomes
constant (i.e., we are in the “linear bias regime”).

Assuming linear bias, we can express the galaxy 2-point correlation func-
tion as follows

ξg(|~x− ~y|) = b2ξ(|~x− ~y|), (1.80)

ζg(|~x− ~y|, |~y − ~z|) = b3ζ(|~x− ~y|, |~y − ~z|). (1.81)
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In the case of galaxy photometric surveys, a large sample of galaxies is
usually observed. Galaxies are located at different positions and redshift,
but since the latter quantity is not known with high accuracy in photometric
surveys, angular (i.e., projected) 2-point and 3-point correlation functions
are usually considered.

Due to the spherical symmetry of the problem, it is easier to express
the angular correlation functions by using a spherical harmonic transform.
Note that in the following the vectors ~x, ~y and ~z indicate the position on a
sphere, we are not interested in the radial information. To avoid confusion
with the notation above, we will add the subscript p to the vectors. For the
2-point correlation function, we can write, for two galaxy samples i and j:

ξijg (|~x− ~y|) =
∑
`

2`+ 1

4π
P`(cos θ))Cij

` , (1.82)

with P`(x) the Legendre polynomial of order ` and:

Cij
` =

(
8π

c2

)2 ∫
k2dk

2π3

∫ ∞
0

dχ

χ
qiδ(χ)j`(kχ)

∫ ∞
0

dχ′

χ′
qjδ(χ

′)j`(kχ
′)P (k, χ, χ′),

(1.83)
with j` the spherical Bessel function , ` = kχ and

qiδ = bi(k, z(χ))
nig(z(χ))

n̄ig

dz

dχ
. (1.84)

with nig the redshift distribution of the i−th sample and bi the linear galaxy-
matter bias. For the 3-point correlation function the projected statistic will
depend on the spatial configuration of the three projected points. Consid-
ering three galaxy samples i, j and m:

ζ ijmg (|~x−~y|, |~y−~z|) =
∑

`1,`2,`3,m1,m2,m3

Bijm
`1,`2,`3,m1,m2,m3

Y`1m1(~x)Y`2m2(~y)Y`3m3(~z),

(1.85)
with Y`m the spherical harmonics. By defining the Clebsch–Gordan coeffi-

cients

(
`1 `2 `3

m1 m2 m3

)
, we can write:

Bijm
`1,`2,`3,m1,m2,m3

=

(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)
×√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π
Bijm
`1,`2,`3

, (1.86)

29



1.6. STRUCTURE
FORMATION

CHAPTER 1. COSMO-
LOGICAL BACKGROUND

Bijm
`1,`2,`3

=

(
8π

c2

)3 ∫
k2dk

2π3

∫ ∞
0

dχ

χ
qiδ(χ)j`1(kχ)

∫ ∞
0

dχ′

χ′
qjδ(χ

′)j`2(kχ′)×∫ ∞
0

dχ′′

χ′′
qmδ (χ′′)j`3(kχ′′)B(k, χ, χ′, χ′′). (1.87)

The above relations are usually simplified by means of the Limber approxi-
mation, which basically substitutes:

j`(kχ) → δD(ν − kχ), (1.88)

with ν = `+1/2. This approximation is accurate if the rest of the integrand
is slowly varying compared to the spherical Bessel function, which is gener-
ally the case at large ` (i.e., small scales). The approximation breaks down
at large scales or for very narrow or barely overlapping redshift distributions.
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Chapter 2

Weak Gravitational Lensing

Figure 2.1: SDSS J1038+4849 galaxy clus-
ter, from the NASA/ESA Hubble Space
Telescope. Strong gravitational lensing ef-
fects are responsible for the Einstein’s rings,
which are the result of a strong deflection of
the light emitted by two galaxies behind the
cluster.

Gravitational lensing generally refers
to the phenomena of deflection of
light trajectories due to the effect
of gravitational fields. The idea
that gravity could bend the trajec-
tory of light rays was born before
the advent of General relativity; un-
der the dichotomic conception that
light can be either considered as a
wave or a particle, one could com-
pute the bending of trajectory of
massless light particles due to mas-
sive objects using standard New-
townian physics. However, as shown
by Eddigton in 1919, the Newtow-
nian prediction was incorrect by a
factor of 2 compared to Einstein’s
theory. That very measurement cor-
roborated the validity of General
Relativity, which at the time was
considered mostly as a speculation,
paving the way to the theory of
gravitational lensing as we know it today.

When the gravitational field responsible for the deflection is strong enough,
it can generate evident patterns in the observed images. In this regime of
strong gravitational lensing, one could observe multiple images of the same
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objects, usually in the version of arcs or Einstein’s rings (see Fig. 2.1). Mag-
nification effects due to lensing can be as strong as to allow the detection
of faint objects that could not be detected otherwise. Strong gravitational
effects are usually confined to peculiar environments as, e.g., a dense cluster
of galaxies.

In this thesis we focus on the regime were lensing effects are weak (weak
gravitational lensing). This is the case of the light emitted by distant galax-
ies, which is deflected by the Large Scale Structure (LSS) of the Universe.
Photons emitted by distant galaxies are subject to the gravitational fields
of all the matter distribution of the Universe, and as a net result the im-
ages we detect are distorted. Contrary to the strong lensing regime, in the
weak lensing regime the lensing effects are generally much smaller than the
noise on a single galaxy basis and very large ensembles of galaxies (and
statistical tools) are needed to detect them. This poses a number of obser-
vational challenges, making the detection (and interpretation) of the weak
lensing signal not an easy task. Despite all the technical difficulties, the
weak lensing signal has proven to be an extraordinary cosmological probe,
due to its sensitivity to the LSS. In the following sections, we will lay out
the formalism needed to describe the weak lensing observables used in this
thesis.

2.1 Propagation of light in General Relativ-

ity

Let us consider the task of modelling the propagation of light rays in a
general space-time. This can be achieved using Fermat’s principle and min-
imising the light travel time for a generic trajectory followed by a light
ray1. Let us consider the coordinate system of a flat Minkowski space
time ξα and a generic coordinate transformation ξα = ξα(xµ). Let gµν =
∂ξα/∂xµ∂ξβ/∂xνηαβ be the metric describing our new space-time, and ηαβ =
diag(−1, 1, 1, 1) the metric tensor of the flat, Minkowski space time. We can
describe a generic path in space time as

xµ(s), (2.1)

1In General Relativity, this approach is equivalent to solve the geodesic equation for
massless particles.

32



2.1. PROPAGATION OF
LIGHT IN GENERAL
RELATIVITY

CHAPTER 2.
WEAK GRAVITA-
TIONAL LENSING

where s is an arbitrary parameter describing the trajectory. The infinitesi-
mal line element ds can be expressed as:

ds2 = gµνdx
µdxν . (2.2)

The element ds represents the infinitesimal space time interval between two
events separated by dxµ in a generic metric. Massless particles move along
lines that minimise the space time interval, i.e., ds2 = 0 (whereas massive
particles are characterised by ds2 < 0)2. One can further express the light
travel time in a closed form if the metric is diagonal. E.g., we can consider
the Minkowski metric perturbed by a lensing potential Φ: gµν = diag(−(1+
2Φ/c2), 1− 2Φ/c2, 1− 2Φ/c2, 1− 2Φ/c2) (note that here we do not consider
the expansion of the Universe yet). The light travel time along a trajectory
xµ(s) between a point A and a point B reads:

T =

∫ tB

tA

dt =

∫ sB

sA

dt

~dx

~dx

ds
ds ≈

∫ sB

sA

(
1− 2Φ

c2

) ~dx

ds
ds, (2.3)

where in the last approximation we expanded dt
~dx

at first order. This is
analogous to geometrical optics, with the gravitational potential acting as
a medium with variable refractive index n =

(
1− 2Φ

c2

)
deflecting the path

of light. To minimise the light path, we look for solutions of the equations
δT = 0. This is is a standard variational problem3 and Eq. 5.1 can be
equivalently solved by:

d

ds

[(
1− 2Φ

c2

)
~u

]
− ~∇

(
1− 2Φ

c2

)
= 0, (2.4)

with ~u =
~dx
ds

the unit vector tangent to the path of the light. It follows:(
1− 2Φ

c2

)
~̇u = ~∇

(
1− 2Φ

c2

)
− ~u

[
~∇
(

1− 2Φ

c2

)
~u

]
, (2.5)

2A 4-vector Uα can be either null (UαUα = 0), space-like (UαUα > 0), time-like
(UαUα < 0). Massless particles follow geodesics whose 4-velocity is a null 4-vector,
whereas the 4-velocity of massive particles is time-like. In Minkowski space time, it
can be seen that a particle moving with 4-velocity Uα = dxα/dτ will lay on the light-
cone if UαUα = −(dx0/dτ)2 + (dx1/dτ)2 + (dx2/dτ)2 + (dx3/dτ)2 = 0 (for an observer
centered at the origin of the reference system, the light cone is defined as (dx0/dτ)2 =
(dx1/dτ)2− (dx2/dτ)2− (dx3/dτ)2). If the 4-velocity is such that UαUα < 0, the particle
will only move inside the light-cone.

3Let us consider the functional S(~x) =
∫
dtL(t, ~x(t), ~̇x(t)), with ẋ = dx

dt . Variational
principles aim to find the function ~x(t) that minimises the functional S(~x(t)), i.e. δS(~x) =
0. This leads to solving the associated Euler–Lagrange equation d

dt
∂L
∂ẋi − ∂L

∂xi = 0 for
i ∈ 0, .., n.
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Figure 2.2: Sketch of propagation of light rays, from Kilbinger (2015). The quantity ~β
represents the angular separation of two light rays in case of no gravitational perturbation,
while the angular separation observed is ~θ.

~̇u =
d2~x

ds2
= ~∇⊥ ln

(
1− 2Φ

c2

)
≈ − 2

c2
~∇⊥Φ. (2.6)

In the above equation, the gradient is meant to be taken perpendicular to
the light paths. The left hand side of Eq. 2.6 represents the variation of
the tangent unit vector along the path of light. By integrating along the
whole trajectory, one can obtain the total deflection angle ~̂α, defined as the
deviation between the perturbed and unperturbed path:

~̂α ≡
∫ sB

sA

d2~x

ds2
=

2

c2

∫ sB

sA

~∇⊥Φds. (2.7)

2.1.1 Propagation of light in an inhomogeneous Uni-
verse

Let us consider the deflection of light in an inhomogeneous Universe. We
now consider the FLRW metric for a homogeneous Universe perturbed by
a lensing potential Φ, adopting spherical coordinates for the spatial part of
the metric ξµ = (ct, χ, θ, φ). This metric was introduced in Eq. 1.54. It can
be shown that the propagation equation (Eq. 2.6) can be re-written as the
equation of a driven harmonic oscillator, with the gravitational potential
playing the role of the external force:

d2~x

dχ2
+K~x = − 2

c2
~∇⊥Φ, (2.8)
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which admits the general solution:

~x(χ) = fK(χ)~θ − 2

c2

∫ χ

0

dχ′fK(χ− χ′)~∇⊥Φ. (2.9)

In eq. 2.9, ~θ represents the angular separation of two light rays as seen by
the observer (see Fig. 2.2). The quantity ~β ≡ fk(χ)~θ (which, in case of

flat curvature, reduces to the Euclidian ~β = χ~θ), represents the angular
separation of two light rays in case of no gravitational perturbation. We
can write the deflection angle as:

~α =
fK(χ)~θ − ~x
fK(χ)

=
2

c2

∫ χ

0

dχ′
fK(χ− χ′)
fK(χ)

~∇⊥Φ, (2.10)

and define the lens equation, which relates the deflection angle ~α, the “un-
perturbed” angular separation ~β and the angular separation seen by the
observer ~θ:

~β = ~θ − ~α. (2.11)

Formally, the right-hand side of Eq. 2.10 must be evaluated along the per-
turbed path of the light ray, which is unpractical. The Born approximation
is usually applied, and ~∇⊥Φ is evaluated along the unperturbed path of
light. The approximation holds as long as the deflection angle is small (i.e.
Φ/c2 << 1)4, which usually holds in the weak lensing regime. Perturbative
solutions to the propagation equation exist accounting for deviation from the
Born approximation (e.g. Krause & Hirata 2010), but such corrections are
usually neglected in current low redshift weak lensing surveys. Post-Born
corrections become more important when modelling measurements involv-
ing CMB observables, due to the long path travelled by CMB photons, as in
the case of the CMB lensing bispectrum (Pratten & Lewis, 2016) or CMB
convergence cross-correlation with low redshift galaxy counts (Böhm et al.,
2020).

2.2 Linearised lens mapping: shear and mag-

nification

We now Taylor expand the lens equation (Eq. 2.11) at first order, considering

the linear mapping between the infinitesimal lensed displacement δ~β and

4In galaxy clusters, e.g., Φ/c2 << 10−5.
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unlensed displacement δ~θ. We define the inverse amplification matrix A =
∂~β/∂~θ, whose elements read5:

Aij =
∂βi
∂θj

= δij −
∂αi
∂θj

=

δij −
2

c2

∫ χ

0

dχ′
fK(χ′)fK(χ− χ′)

fK(χ)

∂2

∂xi∂xj
Φ = δij −

∂2

∂xi∂xj
ψ(~θ, χ), (2.12)

where we introduced the lensing potential ψ(~θ):

ψ(~θ, χ) =
2

c2

∫ χ

0

dχ′
fK(χ′)fK(χ− χ′)

fK(χ)
Φ(fK(χ′)~θ, χ′). (2.13)

The lensing potential is the lensing-efficiency-weighted integral of the grav-
itational potential; in case of a flat universe (K = 0), the lensing weight
function fK(χ′)fK(χ−χ′) is a parabola peaking at χ/2, meaning that lenses
half-way between the observer and the sources maximise the contribution
to the lensing potential. We also note that in absence of a lensing poten-
tial, the mapping between lensed and unlensed coordinates described by
Eq. 2.12 reduces to the identity. The amplification matrix can be written
in more compact form introducing the convergence κ and the shear field
~γ = γ1 + iγ2 = |γ|e2iφ:

Aij =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
. (2.14)

where the convergence and the shear field are evaluated at a given position
in the space time (~θ, χ) and are related to the lensing potential through the
following equations:

κ ≡ 1

2
(∂i∂i + ∂j∂j)ψ =

1

2
∇2ψ; (2.15)

γ1 ≡
1

2
(∂i∂i − ∂j∂j)ψ; (2.16)

γ2 ≡ ∂i∂jψ. (2.17)

The shear field is a spin-2 quantity; its amplitude describes the degree
of distortion, whereas its phase6 is related to the direction of distortion.

5We also used the fact that ∂
∂~x = 1

χ
∂

∂~θ
.

6Note that the phase is multiplied by a factor of “2”, which reflects the fact that the
shear field is a spin-2 quantity. Physically, it reflects the fact that ellipses transform into
themselves after a rotation of 180 degrees.
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The convergence field has also a very clear physical interpretation: it repre-
sents the integrated matter contrast along the line-of-sight (see § 2.3). It is
customary to introduce the reduced shear field ~g, defined as:

~g(~θ, χ) =
~γ(~θ, χ)

1− κ(~θ, χ)
, (2.18)

The reduced shear field has been introduced instead of the shear field as it
is the quantity that can be directly accessed by observations. With this new
notation, the amplification matrix assumes the form:

A = (1− κ)

(
1− g1 −g2

−g2 1 + g1

)
. (2.19)

The amplification matrix A describes the mapping between the lensed coor-
dinates (~θ) and the unlensed coordinates (~β); to obtain the opposite map-
ping, we simply invert the matrix:

d~θ = A−1d~β, (2.20)

with

A−1 =
1− κ

(1− κ2)(1− |g|2)

(
1 + g1 g2

g2 1− g1

)
. (2.21)

The fact we are considering the weak lensing regime, where κ and |g| are
expected to be small, guarantees the matrix to be invertible (i.e. detA 6= 0).
The impact of the convergence and (reduced) shear field on a given image
can be understood taking a circular image of radius R distorted by the
matrix A−1 as explanatory case. The distortion will map the circular image
into an ellipse with semi-axes a, b corresponding to the eigenvalues of the
inverse amplification matrix A:

a =
R

1− κ− |γ|
=

R

(1− κ)(1− |g|)
, (2.22)

b =
R

1− κ+ |γ|
=

R

(1− κ)(1 + |g|)
. (2.23)

and the major axis forms an angle φ with the θ1 axis. In absence of shear,
the convergence field acts on the radius of the circle, without modifying its
shape; on the other hand, the shear field will transform the circle into an
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ellipse and rotate the image (see Fig. 2.3). The ellipticity of the image after
the distortion will be:

~ε ≡ a− b
a+ b

=
~γ

1− κ
= ~g. (2.24)

The ellipticity of the image is directly related to the reduced shear field,
which is the direct observable, rather than the shear field. Moreover, real
galaxies do not have a circular shape, but they have their own intrinsic
ellipticity ~εs. The measured ellipticity ~ε of a galaxy is thus a combination
of the galaxy intrinsic ellipticity ~εs and the value of the shear field ~g at the
galaxy position:

~ε =
~εs + ~g

1 + ~g∗~εs
, (2.25)

where the asterisk denotes complex conjugation. In the weak lensing regime,
the above equations can be approximated to :

~ε ≈ ~εs + ~γ. (2.26)

Assuming that the intrinsic ellipticities of galaxies are randomly oriented,
the mean of the observed ellipticities is an unbiased estimator of the shear
field, i.e, 〈~ε〉 ≈ 〈~γ〉. In practice, this is not true for two reasons. The first
reason is that galaxies are not randomly oriented because of an effect known
as intrinsic alignment. Galaxies tend to have correlated orientations (and
measured ellipticities), due to gravitational interactions. Intrinsic align-
ments add an excess of correlation between galaxy shapes, which has to be
accounted for in any weak lensing cosmological analyses. The second reason
is that measuring galaxies ellipticity is a complicated procedure and it is
subject to a number of measurement biases. We will discuss in more depth
in § 3.1 how to estimate the shear field from noisy data.

One can also compute the variation in the solid angle covered by the
distorted image with respect to the source by defining the magnification
factor µ7 as:

µ =
πR2

πab
=

1

(1− κ)2 − |γ|2
≈ 1 + 2κ. (2.27)

Eq. 2.27 indicates that in the weak lensing regime, at first order, the change
in the solid angle due to lensing effects is solely caused by the convergence
field κ.

7The magnification coefficient is formally defined as µ ≡ 1
detA .
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Figure 2.3: Effects of the convergence and shear field on a circular image. The green
circle shows the unsheared, original image. Source: Wikipedia.

2.3 Lensing convergence as projected matter

density

We anticipated in the previous section that the convergence field has a very
clear physical interpretation: it represents the integrated matter contrast
along the line-of-sight. This can be shown combining the Poisson equation
for the perturbed density field (Eq.1.61, for matter only) with the definition
of convergence (Eq. 2.15) and lensing potential (Eq. 2.13):

κ(~θ, χ) =
3H2

0 Ωm

2c2

∫ χ

0

dχ′
fK(χ′)(fK(χ)− fK(χ′))

fK(χ)

δ(fK(χ′)~θ, χ′)

a(χ′)
, (2.28)

where we used the definition of mean matter density:

ρ̄m =
3H2

0 Ωm

8πGa3
. (2.29)

Eq. 2.28 shows how the convergence field κ is related to the matter density
contrast δ by an integration along the line-of-sight, weighted by a lensing
kernel. For a given redshift distribution of sources n(z(χ)), Eq. 2.28 be-
comes:

κ(~θ) =

∫ ∞
0

dχn(z(χ))κ(~θ, χ) =

∫ χ

0

dχg(χ)δ(fK(χ)~θ, χ), (2.30)
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with

g(χ) =
3H2

0 Ωm

2c2

fK(χ)

a(χ)

∫ ∞
χ

dχ′
fK(χ′ − χ)

fK(χ′)
n(z(χ′)). (2.31)

The quantity g(χ) represents the lensing strength of the source distribution
at a given distance χ.

2.4 Shear 2-point and 3-point correlation func-

tions

In analogy with the galaxy 2-point and 3-point correlation functions, one
can define the shear 2-point and 3-point correlation functions, which specify
the probability of having a pair or triplet of shear values at given angular
separations. The main advantage is that, using the shear field, one can
probe the underlying matter density field properties without the need of a
galaxy bias model.

One starts by assuming spherical symmetry and define the spherical
harmonic decomposition of the shear field:

γ( ~xp) =
∑
`m

γ`m2Y`m, γ∗( ~xp) =
∑
`m

γ`m−2Y`m, (2.32)

with 2Y`m, −2Y`m spin-2 spherical harmonics (because the shear field is a
spin-2 quantity). Given two galaxy samples i and j, we can define the usual
shear two-point correlation functions ξ+ and ξ− as:

ξij+(|~xp − ~yp|) ≡ 〈γ∗( ~xp)γ(~yp)〉 =
∑
`

2`+ 1

4π
d`2,2(θ)Cεε,ij

` , (2.33)

ξij−(|~xp − ~yp|) ≡ 〈γ( ~xp)γ(~yp)〉 =
∑
`

2`+ 1

4π
d`2,−2(θ)Cεε,ij

` , (2.34)

with d`2,2(θ), d`2,−2(θ) the reduced Wigner D-matrices. The formalism is
similar to the case of the galaxy 2-point correlation function (Eq. 1.82), but
with the difference that the galaxy density field is a spin-0 quantity and we
had to use d`0,0(θ) = P`(cos(θ)). It is also common practice to adopt the
flat-sky approximation, where the reduced D-matrices are approximated by
ordinary Bessel functions:

d`2,2(θ) ≈ J0(`θ), d`2,−2(θ) ≈ J4(`θ), (2.35)
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ξij+(|~xp − ~yp|) =
1

2π

∫
d``J0(`θ)Cεε,ij

` , (2.36)

ξij−(|~xp − ~yp|) =
1

2π

∫
d``J4(`θ)Cεε,ij

` . (2.37)

The quantity Cεε,ij
` is the shear power spectrum. It is related to the con-

vergence power spectrum via Eq. 2.15 (which becomes in spherical harmon-
ics Cεε,ij

` = 1
4

[[`(`+ 1)(`− 1)(`+ 2)]]Cκκ,ij
` . The term Cκκ,ij

` is similar to
Eq. 1.83, but once having replaced the redshift distributions with the quan-
tity g(χ) (i.e., the lensing kernel weighted redshift distributions) defined
above:

Cκκ,ij
` =

(
8π

c2

)2 ∫
k2dk

2π3

∫ ∞
0

dχ

χ
gi(χ)j`(kχ)

∫ ∞
0

dχ′

χ′
gj(χ′)j`(kχ

′)P (k, χ, χ′).

(2.38)
The shear 3-point correlation functions are definitely less used than their
galaxy counterparts. In general, one can define 8 different combinations of
shear 3-point correlation functions: 〈γ( ~xp)γ(~yp)γ(~zp)〉, 〈γ∗( ~xp)γ(~yp)γ(~zp)〉,
〈γ( ~xp)γ

∗(~yp)γ(~zp)〉, 〈γ( ~xp)γ(~yp)γ
∗(~zp)〉, 〈γ∗( ~xp)γ∗(~yp)γ(~zp)〉, etc. The shear

3-point correlation functions can be written as

〈γ(∗)( ~xp)γ
(∗)(~yp)γ

(∗)(~zp)〉 =∑
`1,`2,`3m1,m2,m3

εεBm1,m2,m3

`1,`2,`3 ±2Y`1m1(~xp)±2Y`2m2(~yp)±2Y`3m3(~zp), (2.39)

εεεBm1,m2,m3

`1,`2,`3
=

(
`1 `2 `3

±2 ∓2 ∓2

)(
`1 `2 `3

m1 m2 m3

)
×√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π
εεεB`1,`2,`3 . (2.40)

The quantity εεεB`1,`2,`3 relates to the convergence bispectrum as εεεB`1,`2,`3 =
1
8

[[`(`+ 1)(`1)(`+ 2)]]3/2 κκκB`1,`2,`3 . Similar to the case of the convergence
power spectrum, the convergence bispectrum can be obtained from Eq. 1.87
replacing the redshift distributions with the quantity g(χ). As done in
§ 1.6.4, one can apply the Limber approximation to further simplify the
above equations.

While the shear 2-point correlation functions are widely used in current
cosmological analysis, the same is not true for the shear 3-point correlation
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functions. Analogously, other higher order statistics (aperture-mass statis-
tics, moments, peaks, Minkowski functionals, etc..) are less used. The main
reason is that the computation of the statistic estimators and the theoreti-
cal modelling of the signals become more complicated as soon as one moves
beyond 2-point statistics. In some cases, theoretical predictions do not even
exist, and numerical simulations are needed to model the measurements.

However, going beyond 2-point statistics is important, as they only cap-
ture the Gaussian information stored in the field, while it is well known that
the probability distribution function (PDF) of the galaxy density contrast
in the late Universe is not Gaussian (Hubble, 1934; Coles & Jones, 1991;
Wild et al., 2005). For this reason, Chapter 7 of this thesis will investi-
gate how high order statistics can be used to infer cosmological parameters,
improving the constraints upon standard 2-point statistics. In particular,
second and third moments of the convergence field will be used.
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The Dark Energy Survey

The Dark Energy Survey (DES) is designed to probe the origin of the ac-
celerated expansion of the Universe and help understand the nature of dark
energy. It is a huge collaborative effort, involving more than 400 scientists
from over 25 institutions in the United States, Spain, the United Kingdom,
Brazil, Germany, Switzerland and Australia (see Fig. 3.1). This interna-
tional project built and used an extremely sensitive 570-Megapixel digi-
tal camera (DECam, Flaugher et al. 2015), installed at the prime focus of
the 4-meter Blanco telescope at Cerro Tololo Inter-American Observatory
(CTIO), in Chile (Fig.3.2). The camera consists of a set of 74 CCDs (charge-
coupled devices) observing in 5 optical and near-infrared broadbands (grizY,
see Fig. 3.3), with a nominal limiting magnitude of iAB ∼ 24. DES has been
conducting over the past 6 years (2013-2019) two nominal multi-band imag-
ing surveys: a 5000 deg2 wide-area survey in the grizY bands and a ∼27
deg2 deep supernova survey observed in the griz bands with a ∼7 day ca-
dence. The wide-field survey adopted 10 passes with a 90s exposure time for
the griz bands and a 45s exposure time for the Y band. During the period
of observations, DECam detected and measured the position, shape and
photometric redshift of ∼300 million galaxies, ∼3000 type Ia supernovae
and tens of thousands of galaxy clusters.

To investigate the nature of dark energy (and to discriminate between
different dark energy models), DES uses different probes, based on the data
taken by DECam. Choosing probes that are sensitive to the geometry and
the expansion rate of the Universe, as well as probes that are sensitive to
the growth of structures is key, as we explained in Chapter 1. The four
principal probes considered are:

• type Ia supernovae, which allow to test the expansion rate of the
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Figure 3.1: Map of the institutions involved in the Dark Energy Survey. Credit: Judit
Prat.

Figure 3.2: The 570-Megapixel digital camera DECam mounted at the Blanco Telescope
at the Cerro Tololo Inter-American Observatory in Chile. 12 out of its 74 CCDs are
used for guiding and focus, while the remaining 62 are used for imaging. Credit: Rei-
dar/Hahn/Fermilab.
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Universe. These objects are “standard candles”, as their luminosity
is known (after some calibration) when they reach their bright phase.
This allows to measure their luminosity distance from their measured
apparent magnitudes. A comparison between the redshift and the
luminosity distance of a large number of supernovae allows to derive
the history of the expansion of the Universe.

• Baryonic Acoustic Oscillations (BAO), which are the fluctuations
in the baryonic matter density field caused by acoustic density waves
in the primordial photo-baryon plasma. These fluctuations in the
early Universe have left an imprint in the large scale structure of the
Universe at later stages, which can be observed and measured as an
overdensity of galaxies at a very specific scale. This scale, which can be
interpreted as the maximum travelling distance of the acoustic waves
in the primordial plasma represents a “standard ruler”. Its value as a
function of redshift is a probe of the history of the expansion of the
Universe.

• Counting galaxy clusters is a sensitive probe of the history of growth
and geometry of the Universe. The density and the formation of struc-
tures over cosmic time depends on the dark energy properties and
the matter content of the Universe; therefore, the number density of
galaxy clusters, as a function of cluster mass and redshift, is a sensible
observable to constrain cosmological parameters values and more in
general, to discriminate between different cosmological models.

• Weak gravitational lensing (Chapter 2): the deflection of light
trajectories due to the effect of the gravitational fields generated by
the large scale structure of the Universe. It allows to map the mass
content of the Universe as a function of cosmic time, but it is also
sensitive to the geometry of the Universe and, in turn, to the amount
and the properties of dark energy.

While DES uses the four different probes to learn about dark energy, this
thesis focuses on the last probe, the weak gravitational lensing. In particu-
lar, this thesis makes use of the data gathered over the first three years of
observations (DES Y3) of DECam. The DES Y3 data represent a significant
increase in total area compared to the Y1 data: the effective area reaches
the nominal goal of ∼5000 deg2, overtaking the ∼1800 deg2 analysed in DES
Y1 (see Fig. 3.4). While the DES Y3 data are not as deep as we expect
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Figure 3.3: Standard bandpasses for the DECam g, r, i, z and Y filters. The bandpasses
represent the total system throughput, including atmospheric transmission (airmass=1.2)
and the average instrumental response across the science CCDs (Abbott et al., 2018).

for the final DES sample, the number of shapes used for the weak lensing
analysis in DES Y3 is already ∼ 120 million, making it the largest weak
lensing survey up-to-date.

In the next two sections we will review two crucial techniques for DES
(and for photometric surveys in general): the procedure to estimate the
shear field from measured galaxy shapes and how to estimate the photo-
metric redshift of galaxies. In particular, we will describe the procedures
implemented in the DES Y3 analysis.

3.1 Shear estimation

Any weak lensing analysis relies on an estimate of the shear field across a
part of the sky. The shear field is usually estimated from an ensemble of
measured galaxy shapes. In order to beat down the contribution due to
the intrinsic shape of galaxies (usually referred to as “shape noise”), a large
number of faint galaxies is measured, which poses a number of observational
challenges. Briefly, we can divide the process of estimating the shear field
from the observed images in two steps:

• Inferring galaxy shapes (and galaxy properties) from observed images.
This involves implementing algorithms to detect sources, remove (i.e.
deconvolve) the effects of the PSF, and measure the galaxy properties
efficiently;

• inferring the shear field from the measured galaxy properties. This
includes a calibration phase through the use of image simulations in
case the shear field estimator was biased (as in basically all the cases).
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Figure 3.4: Footprint of the DES Y3 shear catalogue. The Y3 catalogue is shown in blue.
For comparison the science verification (SV) and Y1 footprints, which are nearly subsets
of the Y3 are overplotted in red and green respectively.

.

3.1.1 Detection

In the detection step objects are usually identified by detecting peaks above
a given threshold (see, e.g., Source Extractor, Bertin & Arnouts 1996a). In
DES, each patch of the sky is observed multiple times1, and single-epoch
images are co-added by a weighted average so that the global S/N is im-
proved and the effect of transient imaging artifacts is mitigated. Sources
are identified by imposing a threshold on a nonlinear combination of the r,
i, and z co-added images2

The detection step can be affected by the problem of “blending”, which
refers to the case where the light of a brighter object influences a fainter
neighbour. Not only does blending affect the inferred properties (e.g., their

1For DES Y3, the full footprint has been observed 6-7 times. Different exposures
are slightly dithered (i.e., shifted) to reduce the impact of systematics related to the
instrument response.

2In DES Y3, r, i, and z co-added images are combined using a variation of the
combination method proposed by Bertin (2010), where the pixel value of a combined
image is χ =

√
(
∑
wif2

i ) /n , with fi the background-subtracted pixel value, wi the
weight of the pixel in a given co-added image, and n the number of inputs. Objects
are detected by applying a 1.5 S/N threshold on the value of the pixels of the combined
image.
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shapes) of a faint neighbour, but it can also prevent its detection, if the two
objects are sufficiently close. This can result in shear biases (and photo-z
biases, if the two objects are at different redshift). Blending is a very com-
plicated problem; despite different strategies to mitigate blending effects,
the DES Y3 analysis ultimately relies on sophisticated image simulations to
quantify the bias induced by blends.

3.1.2 PSF

After detecting the objects, the image must be deconvolved with the point
spread function (PSF). The PSF describes the response of an imaging system
to a point source or point object. Any observed image will be the result of a
convolution between the PSF and the incoming photons wave front. In order
to recover the true image, an accurate modeling of the PSF is mandatory.

The PSF model is usually calibrated using point-like objects, i.e. stars.
Different phenomena contribute to the total PSF, which further depends
on the wavelength range of observations and on whether the telescope is
observing from Earth or from space. In case of a Earth-based telescope, we
can identify the following contributors to the total PSF:

• atmospheric PSF. This term includes all the effects responsible for the
distortion of the image caused by the atmosphere. Incoming photons
are scattered due to local differences in the refraction index of the
atmosphere due to turbulence (seeing). The problem is exacerbated
when the source of the photons is not monochromatic, due to the
wavelength dependence of the seeing (e.g Meyers & Burchat 2015).
Moreover, the refraction index n varies between the entrance in the
atmosphere (n ∼ 1) to the location of the telescope (n > 1), and
this change depends on the zenith angle and on the wavelength of
the incoming photons, generally causing a flattening of the image (the
so called “differential chromatic refraction”). Seeing is the dominant
contributor to the atmospheric PSF for DES, with chromatic effects
being negligible. The process is stochastic, and can spatially vary over
a large range of angular scales;

• detector pixel response. Ideally a top-hat function, it is convolved with
the other PSF components. Detector non-idealities can cause prob-
lems that cannot be treated as a simple convolution. For instance,
flux-dependent effects causing bright, saturated objects to have larger
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size (the so called “brighter-fatter effect”, Antilogus et al. 2014). Elec-
tric fields transverse to the surface of the CCD can also displace the
charges in the detector, causing features as rings or stripes near the de-
tector edges (Plazas et al., 2014b,a) and potentially inducing spurious
coherent patterns in the images.

DES uses an empirical method to estimate the PSF. Empirical methods
usually choose a basis for the PSF model (with common choices being the
Gaussian, Moffat or Kolmogorov functions for the radial profile) and fit the
parameters of the model using a set of stars. For the DES Y3 analysis, a
more flexible model is used involving a grid of pixels of 0.3 arcsec on a side,
each with an independent amplitude at their centers. The amplitudes of
the PSF between pixel centers are found using Lanczos interpolation. The
interpolation between stars positions is then performed using a 3rd order
polynomial basis. A different PSF model is estimated for each exposure
(and therefore, for each band). Contrary to the strategy adopted in the
DES Y1 analysis, the PSF is estimated in sky coordinates rather than in
image coordinates. The PSF model is indeed smother in sky coordinates and
this also allows to more easily correct for features like tree rings that would
have needed otherwise to be included in the PSF modeling. An incorrect
modeling of the PSF can cause both additive and multiplicative biases in
the estimated shear signal (see Chapter 5).

3.1.3 DES: shear estimation and METACALIBRATION

To estimate the shear field, DES (as many other surveys) uses measured
galaxy shapes as a proxy. This usually involves assigning a set of num-
bers to each galaxy describing the observed galaxy light profile, once having
assumed a galaxy model. If the model is not adequate this procedure can in-
duce biases (the so called “model bias”, Voigt & Bridle 2010; Melchior et al.
2010). The presence of noise can also bias the galaxy parameters estima-
tion when maximum-likelihood methods are used (“noise bias”3, Melchior &
Viola 2012a; Refregier et al. 2012a), with galaxies with low signal-to-noise
ratio being particularly affected.

In the case of DES Y3, a galaxy model is simultaneously fitted to all
available epochs and bands for any detected object. The model is convolved

3Noise bias arises from the fact that ellipticity is not a linear function of pixel inten-
sities in the presence of noise and PSF. This bias would vanish in case of a linear model,
which is not the case of shape measurements.
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by the local PSF in each single-epoch image, and a χ2 sum is computed
over all pixels and over multiple exposures/bands. A maximum-likelihood
approach allows to find the best fit parameters of the galaxy model. During
the fit, the light from neighbours is masked out (Jarvis et al., 2016).

Due to the aforementioned issues (the “model bias” and “noise bias”),
the galaxy shapes inferred by the above procedure cannot be directly used
as a proxy for the shear field, as it would represent a biased estimator. In
the DES Y3 analysis we therefore used as a shear estimation algorithm the
METACALIBRATION algorithm (Huff & Mandelbaum, 2017; Sheldon & Huff,
2017), which allows to self-calibrate the shear estimation process through a
manipulation of real images.

METACALIBRATION assumes that we have a noisy and biased measure-
ment of the shear field e that needs to be calibrated to obtain an unbiased
measurement of the shear field γ. In the weak lensing regime (i.e. small
shears), we can write:

e = e|γ=0 +
∂e

∂γ

∣∣∣∣
γ=0

γ + ...

≡ e|γ=0 +Rγγ + ... (3.1)

where we have defined the shear response matrix Rγ . In what follows we
will drop higher order terms4, and assume the ellipticities in the absence of
lensing e|γ=0 average to zero.

Given an ensemble of measurements {ei} and responses {Rγi}, we can
form unbiased statistics of the shear γ. For example, to measure an esti-
mated mean shear γest we can write

〈γest〉 ≈ 〈Rγ〉−1〈e〉 (3.2)

where the averages for e and Rγ are taken over the ensemble of measure-
ments, e.g.

〈e〉 =
1

N

∑
i

ei

〈Rγ〉 =
1

N

∑
i

Rγ i (3.3)

4The next order term is ∝ γ3 (Sheldon & Huff, 2017); for large shears, such as
in the case of tangential shear measurements near the centers of galaxy clusters (e.g.,
McClintock et al. (2019)), it can introduce a ∼ per cent bias, but it can be safely neglected
here.

50



3.1. SHEAR ESTIMATION CHAPTER 3. DES

The shear estimate γest is a weighted mean of the measured e, with weights
Rγ . Responses can also be derived for other statistics of the shear (see
Appendix B.1 for a generalisation of the formalism to the case of shear
2-point functions and in the case of intrinsic alignment).

For metacalibration, the response matrixRγ is measured using finite
difference derivatives. The derivative is calculated by producing versions of
the image that have been sheared by small amounts ±γ ∼ 0.01, and repeat-
ing the measurement e on those sheared images. Central finite difference
estimate is used:

Rγi,j =
e+
i − e−i
∆γj

, (3.4)

In order to perform this shearing, the image must be deconvolved by the
PSF, sheared, and reconvolved by the PSF. Because the reconvolution re-
sults in a different PSF, the basic ellipticity measurement used as the shear
estimator must be performed on a similarly reconvolved but unsheared im-
age. To optimise computational efficiency, the DES Y3 implementation of
METACALIBRATION deconvolves the original image by the complete PSF so-
lution, but then uses a simplified single Gaussian model and Gaussian PSF
to fit the detected objects in the sheared images. METACALIBRATION has
been shown to calibrate also for the biases introduced by this simplified
model Sheldon & Huff (2017). Shear responses are of order Rγ ≈ 0.6 for
typical galaxies in DES, although the value depends on the details of the
measurements such as object signal-to-noise ratio (S/N) and size relative to
the PSF.

Usually, shear catalogues are defined applying additional (“selection”)
cuts on a catalogue of detected objects. For DES Y3, objectes are selected
based on their signal-to-noise and size ratio (the ratio between the object
size and the PSF size). On top of this, objects are assigned to different
tomographic bins depending on their photometric redshift estimate. Any
selection that - more or less implicitly - is based on the galaxies shape and
or size can potentially introduce shear biases. If the details of the detection
algorithm slightly prefer galaxies with a particular alignment with respect
to the shear field or to PSF anisotropies, the hypothesis that galaxy intrinsic
shapes are randomly oriented will be violated, introducing biases. In this
respect, METACALIBRATION can take into account most of the effects induced
by selection cuts. As done for the DES Y1 shear catalogue, selection effects
are taken into account by means of an ensemble selection response 〈RS〉.
This quantity is estimated by selecting the sample using sheared quantities
(signal-to-noise, size ratio, and photometric redshift estimated from sheared
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fluxes, Huff & Mandelbaum 2017):

RS,i,j =
es+i − es−j

∆γj
. (3.5)

The total response is R = Rγ + RS. The contribution of RS to the total
response is typically of few percent. Averages are then performed using the
total response, which self-calibrate the shear estimator:

〈γest〉 = 〈R〉−1〈e〉 (3.6)

As noted in Sheldon & Huff (2017), the average response matrix 〈R〉 is, to
good approximation, diagonal: as a consequence, the response correction
reduces to element-wise division.

3.1.4 Remaining biases in the shear estimator

Shear catalogues are usually validated through a battery of null-tests or us-
ing sophisticated image simulations, to unveil remaining systematic and/or
observational biases. This also applies to the DES Y3 METACALIBRATION

shear catalogue; despite its self-calibration procedure, small multiplicative
and additive biases are expected to persist, for a number of reasons. Fol-
lowing the standard notation introduced by Mandelbaum et al. (2014), we
can write an estimate of the shear as:

γest
i = miγ

true
i + ci (3.7)

where mi and ci are the per-component multiplicative and additive biases,
and γest

i is the value of the shear field estimated from the METACALIBRATION

procedure. For instance, if the PSF is misestimated, both multiplicative
and additive biases are expected (if the size of the PSF is misestimated,
a multiplicative bias will occur; if the ellipticity of the PSF is misesti-
mated, an additive bias will occur that is related to the PSF orientation).
METACALIBRATION assumes a perfect knowledge of the PSF model, so any
PSF misestimation will clearly affect the performance of the algorithm.
METACALIBRATION, in its DES Y3 implementation, do not self-calibrate
blends (Sheldon et al., 2019), which induce a multiplicative bias of the order
of 2-3 per cent (MacCrann et al., 2020), to be calibrated against simulations.
In general, additive biases can be spotted by devising and performing null-
tests on the catalogue itself (i.e, by measuring quantities whose dependence
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Figure 3.5: Top: rest-frame template of an elliptical galaxy redshifted at z = 0.4 and z
= 0.8. These objects exhibit clearly different colours. Bottom: templates of an elliptical
galaxy and a Sbc galaxy at different redshifts. In the griz bands those two objects are
nearly indistinguishable, due to the degeneracy between galaxy type and redshift (Buchs
et al., 2019)

on the shear signal is expected to vanish). On the other hand, multiplica-
tive biases are better estimated through the use of image simulations where
the true shear signal is known, as it is hard to disentangle the effect of the
shear field from potential multiplicative systematics in data. We will dis-
cuss in more depth the systematic null tests for the DES Y3 shear catalogue
in Chapter 5, also providing an overview of the tests performed with the
official DES Y3 image simulations.

3.2 Redshift estimation

Galaxy surveys like DES map the angular position of million of galaxies in
the sky; the radial information along the line of sight is retrieved from a
measure of the redshift of each single galaxy. Redshift (§ 1.4.1) is crucial
to any cosmological analysis, as the redshift distribution of the sample of
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galaxies under study is usually needed to model the observables (like, e.g.,
cosmic shear or galaxy clustering).

There exist different ways to estimate the redshift of a galaxy (or a
sample of galaxies):

• spectroscopic redshift (spec-z). The spectroscopic redshift is ob-
tained by measuring the spectral energy distribution (SED) of a galaxy
(i.e, the flux distribution in wavelength space) with a spectrograph.
Features in the spectrum, as emission or absorption lines, need to be
identified and their wavelengths need to be compared to the ones of
a galaxy spectrum in the rest frame following Eq. 1.38. Measuring
galaxy spectra is a time-consuming process, and spectroscopic sur-
veys are limited to fewer, brighter objects compared to phomotetric
surveys;

• photometric redshift (photo-z). In imaging surveys, redshift must
be inferred from the SED integrated over a number of filter bands.
This is a less accurate process, as 1) spectral features like emission
or absorption liners cannot be detected anymore 2) two different rest-
frame SEDs at two different redshifts can be indistinguishable, depend-
ing on the broadbands considered (see Fig. 3.5). Generally photo-
z techniques fall into two categories: template fitting and machine
learning techniques. In the template fitting methods, the measured
broadband galaxy SED is compared to a library of redshifted galaxy
template SEDs. In machine learning methods, a machine learning al-
gorithm that infers redshift from a set of broadband fluxes is trained
using a small (but representative when possible) spectroscopic sample,
and then applied to the galaxy sample of interest.

• clustering redshift (WZ). Clustering-based redshift methods have
met with success in the past years providing alternative ways to stan-
dard photo-z methods to infer redshift distributions. In short, clustering-
based methods exploit the two-point correlation signal between a pho-
tometric sample and a “reference” sample of high-fidelty-redshift galax-
ies divided into thin bins to infer the redshift distributions of the pho-
tometric sample. One of the biggest advantage of clustering-based
methods is that the reference sample does not have to be a represen-
tative sample of the photometric sample.

In the DES Y3 analysis we use an hybrid approach to estimate red-
shift distributions which combines three different methods. In particular,
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we obtain a first estimate of the redshift distributions using a photometric
method called “SOMPZ” (Buchs et al., 2019). The SOMPZ method uses
spectroscopic information and data from a number of deep fields (Hartley
et al., 2020a) where additional photometry in infrared bands and u-band
is available, besides the standard 5-band (grizY ) photometry available in
the DES wide field. This additional information is used to break the de-
generancies in the photo-z estimates of the DES wide field galaxies (which
have fewer bands available). This is achieved by creating Self Organizing
Maps (SOM, Kohonen, 1982) for the spectroscopic, deep and wide fields;
a mapping of the spectroscopic redshifts to the deep SOM is first obtained
and then it is followed by a mapping from the deep to the wide SOM. The
SOMPZ method provides a number of realisations of the redshift distribu-
tions, which should encompass the statistical and systematic uncertainties
of the method. We then filter those realisations using a clustering-based
approach, selecting those that maximise a joint likelihood with clustering
redshift estimates. This part of the analysis is explored in more details
in Chapter 4. Finally, during the process of inferring cosmological param-
eters, an extra constrain on the redshift distributions is provided by the
“shear-ratio” test (Prat et al., 2018), which exploits the strong redshift de-
pendence of ratios of galaxy-galaxy lensing signals that consider the same
lens population but difference source samples.
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Part II

Clustering-based Redshift
Estimates

In this part we use simulations and data from the Dark Energy Survey to
calibrate the fiducial DES Y3 photo-z redshift distributions using

clustering-based techniques. The work presented in this Chapter is going to
be published in Gatti,Giannini et al. (DES collaboration) together with the

DES Y3 cosmological results. The tools developed here represent the
natural continuation of the DES Y1 clustering-redshift strategy, published

in three papers but not discussed in this thesis (Gatti, Vielzeuf et al, 2018;
Davis, Gatti et al. 2018; Cawthon, Davis, Gatti et al. 2018).
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Chapter 4

Calibrating DES Y3 redshift
distributions with
cross-correlations

4.1 Introduction

The DES Y3 Key Project (DES collaboration, 2020) is planned to con-
strain cosmological parameters by combining three different measurements
of two-point correlation functions: cosmic shear (Secco et al., 2020; Amon
et al., 2020), galaxy-galaxy lensing (Prat et al., 2020), galaxy clustering
(Elvin-Poole et al., 2020). The cosmic shear measurement probes the an-
gular correlation of more than 100,000,000 galaxy shapes from the weak
lensing sample (Gatti et al., 2020), divided into four tomographic bins. The
cross-correlation of galaxy shapes and the positions of 1,000,000 red lumi-
nous galaxies identified by the redMaGiC algorithm (Rozo et al., 2016) is
measured by galaxy-galaxy lensing. Lastly, galaxy clustering measures the
auto correlation of the positions of redMaGiC galaxies.

The correct cosmological interpretation of these measurements relies on
an accurate estimate of the redshift distributions of the samples, which
can otherwise lead to biases in the inferred cosmological parameters (e.g.
Huterer et al., 2006; Hildebrandt et al., 2012; Hoyle et al., 2018). Photomet-
ric surveys have been relying on different methodologies to derive redshift
distributions (Hildebrandt et al., 2010; Sánchez et al., 2014), mostly based
on galaxies’ multi-band photometry (photo-z methods). However, these
methods are plagued by a number of issues (ranging from the spectroscopic
samples used for both training and calibration being incomplete, to SED
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templates being inadequate; Lima et al. 2008; Newman et al. 2015; Bezan-
son et al. 2016; Masters et al. 2017) and are ultimately limited by the fact
that any mapping from a set of photometric observables to redshift can
be ambiguous. In this respect, systematics in the redshift distributions esti-
mates have been recently called into play to explain the discrepancies among
some recent weak lensing analyses (Joudaki et al., 2019; Asgari et al., 2019b;
Wright et al., 2019).

Clustering-based redshift methods (Newman, 2008; Ménard et al.; Davis
et al., 2017; Morrison et al., 2017; Scottez et al.; Johnson et al., 2017; Gatti
et al., 2018) have met with success in the past years to provide an alternative
way to infer redshift distributions with respect to standard photo-z meth-
ods. In short, clustering-based methods exploit the two-point correlation
signal between a photometric “unknown” sample and a “reference” sample
of high-fidelty redshift galaxies divided into thin bins, to infer the redshift
distributions of the photometric sample. One of the biggest advantage of
clustering-based methods is that the reference sample does not have to be
representative of the photometric sample. Clustering-based methods (or
clustering-z) have been in the past years successfully applied to both data
(Hildebrandt et al., 2017; Johnson et al., 2017; Davis et al., 2017, 2018;
Cawthon et al., 2018; Bates et al., 2019) and simulations (Schmidt et al.,
2013; Scottez et al.; Gatti et al., 2018), and they represent one credible al-
ternative to standard photo-z methods for the new, upcoming generation of
data sets (Scottez et al.).

Depending on the particular application, cross-correlation methods were
used to provide an independent estimate of the redshift distributions or they
have been used to calibrate other distributions inferred from photo-z meth-
ods. In the DES Y1 cosmological analysis we opted for the latter approach
(Davis et al., 2017; Hoyle et al., 2018). In particular, we used high quality
photometric redshifts provided by redMaGiC galaxies (Rozo et al., 2016) to
measure the clustering-z signal with the weak lensing (WL) sample. The
choice of using high quality photometric redshifts rather than spectroscopic
redshifts was dictated by the higher statistical power of the redMaGiC sam-
ple, owing to the large number of redMaGiC galaxies (650, 000 for DES Y1)
in the DES footprint. Due to the limited redshift range of the redMaGiC
sample, clustering-z estimates could not have been used on their own, but
they have been used to calibrate the mean redshift of the distributions mea-
sured by other DES photo-z methods.

The calibration strategy of the DES Y3 weak lensing redshift distribu-
tions improves upon on the DES Y1 strategy outlined in Gatti et al. (2018)
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on different aspects. We explore two different methods to calibrate redshift
distributions from other photo-z codes using the clustering information: a
method that mostly focuses on calibrating the mean redshift of the distri-
butions (which is similar to what was done in the DES Y1 analysis), and a
second method that calibrates the full shape of the distributions. Further-
more, we improve the modelling of the clustering signal, accounting for the
redshift evolution of the galaxy-matter bias of the reference sample and the
clustering of the underlying dark matter density field, which were neglected
in the DES Y1 analysis. In the second method that calibrates the shape
of the redshift distributions, we also marginalise over magnification effects.
Finally, we use a combination of two different reference samples: redMaGiC
galaxies with high-quality photometric redshifts and a spectroscopic sample
from the BOSS (Baryonic Oscillation Spectroscopic Survey, Dawson et al.
2013) and from the eBOSS (extended-Baryon Oscillation Spectroscopic Sur-
vey, Ahumada et al. 2019) surveys. We note that in the DES Y1 calibra-
tion strategy only redMaGiC galaxies were used. On one hand, redMaGiC
galaxies span the full DES Y3 footprint and are characterised by a higher
number density compared to BOSS and eBOSS galaxies, which only cover
a small portion of the footprint; on the other hand, the latter sample spans
a wider redshift range and have better redshift estimates, which makes the
combination of the two samples desirable.

The fiducial photo-z estimates for the DES Y3 weak lensing sample are
provided by a self-organizing maps based scheme (hereafter SOMPZ, Buchs
et al. 2019; Myles et al. 2020). The SOMPZ method provides for each tomo-
graphic bin a number of posterior samples of the redshift distributions which
encompass systematic and statistical uncertainties. These realisations are
sampled over when estimating the cosmological parameters in the fiducial
DES Y3 cosmological analysis. In this context, we use clustering redshift
estimates to provide priors for the SOMPZ realisations.

We note that there exist other strategies to combine clustering-based
and photo-z estimates. E.g., Sánchez & Bernstein (2019) and Alarcon et al.
(2019) showed how to combine photo-z and clustering-based estimates in a
principled way using a hierarchical Bayesian model (Leistedt et al., 2016).
The application of this method to DES data is left to future works.

This Chapter is organised as follows. In § 4.2 we describe the methodol-
ogy used in DES Y3 to calibrate photo-z posteriors using clustering-based
redshift estimation. The simulations and the data sets used in this Chapter
are described and compared in § 4.3. In § 4.4 we perform extended tests
in simulations assessing the systematic uncertainties of the methods. The
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clustering-based calibration of DES Y3 data is presented in § 4.5. Finally,
in § 4.6 we discuss future prospects for clustering-z methods and present
our conclusions.

4.2 Methodology

In the DES Y3 analysis we use clustering-based redshift estimates as a prior
for the photo-z posterior distributions of a given science sample. We defer
the description (and the choice of the binning) of the particular samples
adopted in this work to § 4.3, while keeping the description of the method-
ology as general as possible. Here, “unknown” always refers to the pho-
tometric galaxy sample we wish to calibrate, whereas “reference” refers to
the galaxy sample with known, highly accurate redshifts (be they spectro-
scopic or photometric). When needed, we will use the label “WZ” to refer
to clustering-based quantities.

4.2.1 First step: modelling the cross correlation sig-
nal and recovering the clustering-based redshift
estimates

Clustering-based methods rely on the assumption that the cross-correlation
between two samples of objects is non-zero only in case of 3D overlap. Let
us consider two samples:

1. An unknown sample, whose redshift distribution nu(z) has to be re-
covered.

2. A reference sample, whose redshift distribution nr(z) is known (ei-
ther from spectroscopic redshifts or from high-precision photometric
redshifts). The reference sample is divided into narrow redshift bins.

To calibrate the redshift distribution of the unknown sample we bin the
reference sample into narrow redshift bins, and then compute the angular
cross-correlation signal wur between the unknown sample and each of these
reference redshift bins. Under the assumption of linear biasing, we find

wur(θ) =

∫
dz′ nu(z′)nr(z

′)bu(z′)br(z
′)wDM(θ, z′) +M(θ), (4.1)

where nu(z′) and nr(z
′) are the unknown and reference sample redshift dis-

tributions (normalised to unity over the full redshift interval), bu(z′) and
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br(z
′) are the biases of the two samples, and wDM(θ, z′) is the dark matter

2-point correlation function. The term M(θ) refers to the contribution to
the angular correlation function due to magnification effects.

In our methodology, we use a “1-point estimate” of the correlation func-
tion. In practice, the correlation function is measured as a function of angle
and then it is averaged over angular scales via

w̄ur =

∫ θmax

θmin

dθ W (θ)wur(θ),

(4.2)

where W (θ) ∝ θ−γ is a weighting function1. We assume γ = 1 to increase the
S/N of the mesurements. The integration limits in the integral in Eq. 4.2
correspond to fixed physical scales. We use the Davis & Peebles (1983)
estimator for the cross-correlation signal,

wur(θ) =
NRr

NDr

DuDr(θ)

DuRr(θ)
− 1, (4.3)

where DuDr(r) and DuRr(r) are respectively data–data and data–random
pairs. The pairs are properly normalised through NDr and NRr, corre-
sponding to the total number of galaxies in the reference sample and in the
reference random catalogues. As in Gatti et al. (2018), we use the Davis &
Peebles estimator rather than the Landy & Szalay (1993) estimator since the
former involves using a catalogue of random points for just one of the two
samples. This allows us to avoid creating high-fidelity random catalogues for
the DES Y3 source galaxy sample whose selection function is very complex.
For our analysis, we only rely on random points for the reference sample,
whose selection function and mask are well understood.

Assuming the reference sample is divided into sufficiently narrow bins
centered at zi, we can approximate nr,i(z) ∝ NrδD(z − zi) (with δD be-
ing Dirac’s delta distribution, and Nr being the number of galaxies in the
reference bin). Hence, Eqs. 4.1 and 4.2 become:

w̄ur(zi) ≈ nu(zi)bu(zi)br(zi)w̄DM(zi) + M̄(zi), (4.4)

1In the DES Y1 analysis (Gatti et al., 2018) we used a slightly different estimator for
the “1-point estimate” of the correlation function. In particular, rather than weighting
the correlation function directly, we weighted the data-data and the data-random pairs
counts of the correlation function estimator individually. This has been changed in the
DES Y3 analysis, as this estimator is slightly faster to compute.
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where barred quantities indicate they have been “averaged” over angular
scales, reflecting the fact that we are using 1-angular bin estimates of the
correlation function. In what follows, for simplicity, we will drop the barred
notation. We note that in Eq. 4.4 we assumed the galaxy-matter biases to
be described by a single number at all scales; this is true at large scales in
the linear regime, but we do not expect this to necessary hold at the small
scales used in this work2. The linear bias assumption is likely to introduce
a small systematic uncertainty that needs to be quantified. If the quantities
br(zi), bu(zi), wDM(zi), M(zi) evolve with redshift, they need to be estimated
to correctly recover the redshift distribution of the unknown sample . We
turn now to how to model or estimate these terms.

• The galaxy-matter bias evolution of the reference sample
br(z). As long as the redshifts of the reference sample are accurate
enough, we can estimate br(z) by measuring the 1-point estimate of
the autocorrelation function of the reference sample divided into thin
redshift bins centered at zi:

wrr(zi) =

∫
dz′ [br(z

′)nr,i(z
′)]

2
wDM(z′). (4.5)

If the bins are sufficiently narrow so as to consider the biases and wDM

constant over the distributions, they can be pulled out of the above
integrals.

wrr(zi) = b2
r (zi)wDM(zi)

∫
dz′n2

r,i(z
′), (4.6)

Knowledge of the redshift distributions of the narrow bins is then
required to use Eq. 4.6 to estimate br(zi). Last, we need to model
wDM(z) to correctly recover br(z).

• The galaxy-matter bias evolution of the unknown sample
bu(z). In principle, it could be estimated similarly to the bias of the
reference sample. The limiting factor that prevents us from using the
autocorrelation functions to estimate the galaxy–matter biases evolu-
tion for the unknown sample is the poor photo-z quality of the un-
known sample. This is the only term we are not going to model in
what follows.

2In the non linear regime, the fact that the terms inside the integral factorizes into
br(zi)bu(zi)wDM(zi) is not guaranteed and can introduce a small systematic uncertainty.
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• The dark matter 2-point correlation function wDM(z). This
can be modeled assuming a given cosmology and a non linear power
spectrum. At fixed zi, this can be written as:

wDM(zi) =

∫
dθW (θ)

∫
dl l

2π
J0(lθ)

1

χ(z)2H(z)
PNL

(
l + 1/2

χ
, zi

)
,

(4.7)

where χ is the comoving distance, H(z) is the Hubble expansion rate
at redshift z, J0 is the zeroth order Bessel function, and PNL(k, χ) is
the 3D non linear matter power spectrum at wavenumber k (which,
in the Limber approximation, is set equal to (l + 1/2)/χ) and at the
cosmic time associated with redshift zi. We found that the redshift
evolution of wDM(zi) depends little on the particular value of cosmolog-
ical parameters, so in the following we will compute this term at fixed
cosmology (we assumed the values in Planck Collaboration 2018).

• Magnification effects M(zi). Magnification (Narayan, 1989; Vil-
lumsen et al., 1997; Moessner & Jain, 1998) can lead to a change in
the observed spatial density of galaxies: the enhancement in the flux
of magnified galaxies can locally increase the number density, as more
galaxies pass the selection cuts/detection threshold of the sample; at
the same time, the same volume of space appears to cover a different
solid angle on the sky, generally causing the observed number density
to decrease. The net effect is driven by the slope of the luminos-
ity function, and it has an impact on the measured clustering signal.
Considering only the dominant terms, this can be written as:

M(z) =

∫
dθW (θ)

∫
dl l

2π
J0(lθ)

∫
dχ

χ2H(z)

× [brαuq
u
δ q

r
κ + buαrq

u
δ q

r
κ]PNL

(
l + 1/2

χ
, z(χ)

)
, (4.8)

where the terms qδ and qκ read:

qδ(χ) =
n(z(χ′))

n

dz

dχ′
, (4.9)
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qκ(χ) =
3H2

0 Ωmχ

c2a(χ)

∫ χ(z=∞)

χ

dχ′
n(z(χ′))

n

dz

dχ′
χ′ − χ
χ′

. (4.10)

Under the approximation of thin redshift bins, we can linearise Eq. 4.8
and write it using a discrete summation over redshift bins:

M(zi) = br(zi)αu

∑
j>i

[Dijnu(zj)] + bu(zi)αr(zi)nu(zi)
∑
j>i

Dij, (4.11)

with

Dij =
3H2

0 Ωm

c2
wDM(zi)

χ(zi)

a(zi)

χ(zj)− χ(zi)

χ(zj)
. (4.12)

The term α ≡ 2.5s − 1 is related to the slope s of the cumulative
number counts evaluated at flux limit. The slope of the cumulative
number counts is formally defined for a flux limited sample as

s =
dLog10n(> m)

dm
, (4.13)

where n(m) is the cumulative number count as a function of magnitude
m, and s is to be evaluated at the flux limit of the sample. For a
sample which is not flux limited, evaluating the coefficient s is more
complicated.

Under the assumption of thin reference bins, linear galaxy-matter bias,
and using the linearised version of the equation describing magnification
effects (Eq. 4.11) , Eq. 4.4 becomes a linear system of equations:

wur(zi) = nu(zi)bu(zi)br(zi)wDM(zi)+

br(zi)αu

∑
j>i

[Dijnu(zj)] + bu(zi)αr(zi)nu(zi)
∑
j>i

Dij. (4.14)

If the values br(zi), bu(zi), wDM(zi), αr(zi), αu are provided, it can be solved
to obtain an estimate of nu(zi). This would be similar to standard clustering-
based methods which use the cross correlation signal as a starting point
to infer the redshift distributions of the unknown sample (Newman, 2008;
Ménard et al.; Schmidt et al., 2013; McQuinn & White, 2013). Alterna-
tively, if an estimate of the nu(zi) is provided by, e.g., a photo-z method,
it can be used to quickly evaluate the expected correlation signal wur(zi)
and compare it to the one measured in data. This can be interpreted as a
forward modelling approach (see e.g., Choi et al. 2016).
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We note that in DES Y1 we did not model many of the terms described
above. In particular, we assumed br(zi), bu(zi), wDM(zi) to be constant as a
function of redshift, and used simulations to estimate the systematic error
induced by this assumption. We also did not model M(zi), but we decided
to exclude the redshift range (i.e., the tails of the redshift distributions)
where magnification effects are expected to have a non negligible impact.

4.2.2 Using the cross-correlation information

In DES Y3 we use the clustering information to provide a prior for the
posterior distributions of a given photo-z code. In this Chapter, we consider
two different approaches. Both approaches start assuming that a given
photo-z code provides us a number k of nu(zi) estimates: {npz,k

u (zi)}. E.g.,
in the DES Y1 analysis, such realisations were provided by a single nu(zi)
estimate from the photo-z code BPZ (Beńıtez, 2000), shifted around their
mean by a quantity ∆z. The two approaches are described below.

• Mean-matching method: we select an interval around the mean
of the redshift distribution such that we can neglect magnification
effects. The exact definition of the interval is arbitrary; following
what was done in the DES Y1 analysis, we choose the interval [〈z〉pz−
2σpz, 〈z〉pz + 2σpz], where σpz is the root mean square of the redshift
distribution n(z) estimated from the photo-z code in the range where
we have clustering estimates from the reference samples (see § 4.4.1
for more details). Starting from the cross correlation measurements
wur(zi), we estimate the redshift distribution using Eq. 4.14:

nu(zi) = A
wur(zi)

br(zi)wDM(zi)
, (4.15)

where A is a normalisation constant which has no relevant effect in
this method. In the above equation the term bu(zi) does not appear
as we cannot estimate it, and its absence must be compensated by an
appropriate systematic uncertainty term. We then compare the mean
of the clustering-based redshift distribution estimate with the mean of
the distributions {npz,k

u (zi)} in the chosen interval. This is similar to
what was done in DES Y1, where we used clustering-based estimates
to directly correct the mean of the posterior of a given photo-z code;
the main difference is that now we further estimate the terms br(zi)
and wDM(zi) in the clustering-based redshift distributions.
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Operationally, this method implies writing the following likelihood:

L〈z〉wz = −1

2
χ2
(
〈z〉pz,k; 〈z〉wz; Σ̂−1

〈z〉wz

)
+ Prior (∆z) . (4.16)

In the above equation, 〈z〉pz,k and 〈z〉wz are the mean of the redshift
distributions estimated by the k-th photo-z realisation and by the
clustering-based method. The prior on the mean in Eq. 4.16 takes
into account systematic uncertainties of the methods. The quantity
Σ̂−1
〈z〉wz

is the precision matrix of the clustering-based mean redshift
measurement.

• Shape-matching method: we forward model the cross-correlation
signal ŵur(n

pz,k) using Eq. 4.14 and using as nu(zi) the k-th realisation
provided by a given photo-z code. Then, we compute the likelihood
with the measured cross-correlation signal wur(zi) in data. In this
case, the likelihood can be written as:

LWZ = −1

2
χ2
(
wur; Sys (z, {si}) ŵur(n

pz,k, {pi}); Σ̂−1
wz

)
+ Prior ({pi}, {si}) . (4.17)

The model ŵur is described by Eq. 4.14 multiplied by a function
Sys(z, {si}) that accounts for the systematic uncertainties of the method.
The nuisance parameters {si} are the parameters of the systematic
functions; on the other hand, {pi} are the free parameters that appear
in Eq. 4.14, i.e., the magnification parameters αu,αr, and the bias of
the unknown sample bu(z). The systematic functions are quantified in
§ 4.4.2.

The quantity Σ̂ for each of the likelihoods is the appropriate covariance
matrix from the cross-correlation measurement. They are estimated from
simulated data through a jackknife (JK) approach, using the following ex-
pression (Norberg et al., 2009):

Σ̂(xi, xj) =
(NJK − 1)

NJK

NJK∑
k=1

(xki − x̄i)(xkj − x̄j), (4.18)

where the sample is divided into NJK = 100 sub-regions of roughly equal
area, xi is a measure of the statistic of interest in the i-th bin of the k-th
sample, and x̄i is the mean of our resamplings. The jackknife regions are
safely larger than the maximum scale considered in our clustering analysis.
The Hartlap correction (Hartlap et al., 2007) is used to compute the inverse
covariance.
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4.3 Simulations and data

4.3.1 DES Y3 Data

The Dark Energy Survey (DES) has been observing ∼ 5000 square degrees
of the southern hemisphere in 5 different broad photometric bands (grizY )
over the past six years. DES has been collecting images with the Dark
Energy Camera (DECam, Flaugher et al. 2015), a 570-megapixel camera
built by the collaboration and stationed at the Cerro Tololo Inter-American
Observatory (CTIO) 4-meter Blanco telescope, and it is expected to infer the
shapes of about 300 million galaxies up to redshift z ∼ 1.4. In this Chapter
we focus on the DES Year 3 (Y3) data, which comprises the analysis of
the first three years of observations. DES Y3 data spans the full area of the
survey (∼4143 deg2 after masking for foregrounds and problematic regions),
representing a huge improvement over the DES Y1 area (∼ 1321 deg2 used
in the Y1 cosmic shear analysis Troxel et al. 2018), but it does not reach yet
the maximum depth. The total number of objects detected in this area is
333,246,422. Objects detection and measurements are described in (Sevilla-
Noarbe et al., 2020).

4.3.2 Buzzard N-body simulation

We use one realisation of the DES Y3 Buzzard catalogue v2.0 (DeRose et al.,
2019). Initial conditions were generated using 2LPTIC (Crocce et al., 2006)
and the N-body run using L-GADGET2 (Springel, 2005). Cosmological
parameters have been chosen to be Ωm = 0.286, σ8 = 0.82, Ωb = 0.047,
ns = 0.96, h = 0.7. Lightcones are generated on the fly starting from three
boxes with different resolutions and size (10503, 26003 and 40003 Mpc3h−3

boxes and 14003, 20483 and 20483 particles), to accommodate the need of
a larger box at high redshift. Halos are identified using the public code
ROCKSTAR (Behroozi et al., 2013) and they are populated with galaxies
using ADDGALS (DeRose et al., 2019). Galaxies are assigned magnitudes
and positions based on the relation between redshift, r-band absolute magni-
tude and large-scale density found in a subhalo abundance matching model
(Conroy et al., 2006; Lehmann et al., 2017) in higher resolution N-body sim-
ulations. SEDs are assigned to galaxies from the SDSS DR7 Value Added
Galaxy Catalog (Blanton et al., 2005) by imposing the matching with the
SED-luminosity-density relationship measured in the SDSS data. SEDs are
k-corrected and integrated over the DES filter bands to generate DES grizY
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Figure 4.1: SOMPZ redshift distributions, as estimated in simulations (upper panels)
and in data (lower panels), for the four tomographic bins considered in this analysis. The
violin plots encompass the statistical and systematic uncertainties of the distributions,
as estimated in Buchs et al. (2019). Vertical dashed lines indicate the mean redshifst of
the distributions.

magnitudes.

Lensing effects are calculated using the multiple plane ray-tracing al-
gorithm CALCLENS (Becker, 2013), which provides weak lensing shear,
magnification and lensed galaxy positions for the lightcone outputs. CAL-
CLENS is run onto the sphere using the HEALPix algorithm and is accurate
to ∼ 6.4 arcseconds. The WL galaxy sample in Buzzard is selected with the
aim of reproducing the same selection applied in DES Y3 data in terms of
size, signal-to-noise and colors. Shape noise has been added to the galaxies
to match the measured shape noise of the DES Y3 WL sample.

4.3.3 Weak Lensing sample

The weak lensing sample in data is created using the metacalibration
pipeline, which is fully described in Gatti et al. (2020). After creating the
DES Y3 ‘Gold‘ catalog (Sevilla-Noarbe et al., 2020), the metacalibration
pipeline measures the shapes of each detected object. The metacalibra-
tion pipeline is able to self-calibrate the measured shapes against shear and
selection biases by measuring the mean shear and selection response matrix
of the sample 〈R〉 = 〈Rγ〉+ 〈Rs〉. The current DES Y3 implementation of
metacalibration is able to correct for shear biases up to a multiplicative
factor of 2-3 per cent, which is fully characterised using image simulations
(MacCrann et al., 2020). Selection cuts for the sample are described in
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Gatti et al. (2020) and are determined based both on empirical tests and
on tests on image simulations, and are designed to minimise systematic bi-
ases in the shear measurement. Galaxies are assigned an inverse variance
weight, which increases the statistical power of the catalogue. The final
sample comprises 100 million objects, for an effective number density of
neff = 5.59 gal/arcmin−2. Galaxies are further divided into 4 tomographic
bins and redshift estimates for each of the tomographic bins are provided
by the SOMPZ method (Buchs et al., 2019).

The preliminary (yet non-published) results on data have been obtained
using the blinded version 3.30.20 of the DES Y3 catalogue. More details
about the catalogue will be given in Chapter 5.

Photo-z estimates: SOMPZ and hyperrank

The SOMPZ method uses spectroscopic information and data from a num-
ber of deep fields (Hartley et al., 2020a) where additional photometry in
the infrared bands and u-band is available, besides the the standard 5-band
(grizY ) photometry available in the DES wide field. This additional infor-
mation is used to break the degenerancies in the photo-z estimates of the
DES wide field galaxies (which have fewer bands available). This is achieved
by creating Self Organizing Maps (SOM, Kohonen, 1982) for the spectro-
scopic, deep and wide fields; a mapping of the spectroscopic redshifts to the
deep SOM is first obtained and then it is followed by a mapping from the
deep to the wide SOM. The full procedure for the Y3 dataset is described
in Buchs et al. (2019).

The weak lensing sample is reproduced with high fidelity in the Buz-
zard simulation by applying flux and size cuts to the simulated galaxies
that mimic the DES Y3 source selection thresholds. Estimates of the N(z)
are then provided using the same SOMPZ method applied to the simu-
lations, showing a good agreement with the distributions obtained in the
data (Fig. 4.1). The tomographic bins are selected such that they have
equal number density.

4.3.4 Reference sample 1: redMaGiC galaxies

The first reference sample used in this analysis consists of DES redMaGiC
galaxies. The redMaGiC algorithm selects red luminous galaxies with high
quality photometric redshift estimates (Rozo et al., 2016). This is achieved
by fitting each galaxy to a red sequence template; galaxies are then selected
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Figure 4.3: The bias (left) and scatter (right) of zredMaGiC for the simulated redMaGiC
sample (solid lines) compared to the data (dashed lines).

only if they pass a goodness of fit and luminosity threshold. In DES, red-
MaGiC galaxies are used as lens sample in the galaxy-galaxy lensing analysis
and in the clustering analysis (Prat et al., 2020; Elvin-Poole et al., 2020).
Three samples are selected with different number density by means of three
distinct luminosity thresholds: a first sample called “high density” selected
with a cut L/L* > 0.5, a sample called “high luminosity” selected with a
cut L/L* > 1 and a sample called “higher luminosity”, selected with L/L*
> 1.5. A combined sample is then obtained by joining these three samples,
using the high density sample for redshifts z < 0.65, the high luminosity
sample for the redshift range 0.65 < z < 0.8, and the higher luminosity
sample for higher redshifts.

In simulations, the redMaGiC sample is selected with the same algorithm
used in the data. A comparison between the redshift distributions for the
redMaGiC samples in data and in simulations is shown in Fig. 4.2, illustrat-
ing the good agreement between the two. Both in simulations and in data,
the redMaGiC sample is divided into 60 thin bins spanning the redshift
interval 0 < z < 1.2; then, only the bins in the range 0.14 < z < 0.90 are
considered, as no redMaGiC galaxies are avaliable outside this range3. The
total number of redMaGiC galaxies is 3,041,935 on data, and 2,594,036 on
simulations. This implies that the statistical uncertainties of the clustering
redshift estimates obtained using the redMaGiC sample are overestimated
in simulations compared to data. We do not expect this to be important,
as we show in § 4.4.1 that the clustering-z methodology is dominated by
systematic uncertainties, and the statistical uncertainties are negligible.

3We note that the simulated redMaGiC sample spans a slightly wider range in red-
shift; we nonetheless cut the redshift interval at z=0.90 to be consistent with the data.
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Figure 4.2: Redshift distributions of the
redMaGiC samples, binned using the red-
MaGiC photo-z estimates, in data and in
simulations.

We further compare the typi-
cal redMaGiC photometric redshifts
scatter and bias found in data and
in simulations in Fig. 4.3. Since only
a portion of the data sample has
spec-z information, we re-weighted
the magnitude distributions of the
spectroscopic sample such that it
matched the magnitude distribu-
tions of the redMaGiC galaxies be-
fore computing the statistics shown
in Fig. 4.3. This re-weighting has
been performed for each thin refer-
ence bin separately.

A catalog of random points for
redMaGiC galaxies is generated uniformly over the footprint. Both in data
and in simulations, weights are assigned to redMaGiC galaxies such that
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Figure 4.5: Spatial coverage of the two reference samples used in this work. Purple
indicates the coverage by redMaGiC galaxies, pink indicates the coverage by BOSS and
eBOSS galaxies.

spurious correlations with observational systematics are cancelled. The
methodology used to assign weights is described in Elvin-Poole et al. (2020),
and it is the same for data and simulations. The main difference between
data and simulations is that the latter only models depth variations across
the footprint, while data are subject to a larger number of systematics which
are not modelled in simulations. This should not affect any conclusion drawn
here as the weights effectively remove all the spurious dependence of the
number density with respect to any systematic, regardless of their number.

4.3.5 Reference sample 2: spectroscopic galaxies

The second reference sample used in this work is a spectroscopic sample ob-
tained from the combination of SDSS galaxies from BOSS (Baryonic Oscilla-
tion Spectroscopic Survey, Dawson et al. 2013) and from eBOSS (extended-
Baryon Oscillation Spectroscopic Survey, Ahumada et al. 2019). The BOSS
sample includes the LOWZ and CMASS catalogues from the SDSS DR 12,
fully described in Reid et al. (2016), while we included the large-scale struc-
ture catalogues from emission line galaxies (ELGs, see Raichoor et al. 2017
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Spectroscopic Samples
Name Redshifts Ngal Area

LOWZ (BOSS) z ∼ [0.0, 0.5] 45671 ∼ 860 deg2

CMASS (BOSS) z ∼ [0.35, 0.8] 74186 ∼ 860 deg2

LRG (eBOSS) z ∈ [0.6, 1.0] 24404 ∼ 700 deg2

ELG (eBOSS) z ∈ [0.6, 1.1] 89967 ∼ 620 deg2

QSO (eBOSS) z ∈ [0.8, 1.1] 7759 ∼ 700 deg2

Table 4.1: List of the spectroscopic samples from BOSS/eBOSS overlapping with the
DES Y3 footprint used as reference galaxies for clustering redshifts in this work.

for the target selection description), luminous red galaxies (LRGs, target
selection described in Prakash et al. 2016) and quasi stellar objects (QSOs)
(eBOSS in prep.) from eBOSS, which were provided to DES for clustering
redshifts usage by agreement between DES and eBOSS. The redshift dis-
tributions of each sample are shown in Fig. 4.4 and the area coverage and
number of objects of each sample is summarised in Table 4.1. The area cov-
erage is smaller compared to redMaGiC galaxies, as it shown in Fig. 4.5. To
replicate the spectroscopic sample in simulations, we selected bright galaxies
with a similar area coverage and redshift distributions as the ones in data.
We did not try to further match other properties of the sample. We note
that even if the galaxy-matter bias of the BOSS/eBOSS sample selected
in simulation might differ from the one measured in data, all the methods
implemented in this Chapter will correct for this.

4.4 Results on simulations

In this section we present the results of our two calibration strategies per-
formed in simulations. In particular, we aim to evaluate the systematic
uncertainties of each method, and verify that the calibration procedure in
simulations works as expected.

Before focusing on the details of the two calibration procedures, we show
in Fig. 4.6 the redshift distributions estimates obtained using the clustering-
based estimator (following Eqs. 4.14, 4.15) in simulations, compared to the
true distributions. The angular scales considered in the clustering measure-
ments have been chosen to span the physical interval between 1500 kpc
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Figure 4.6: Redshift distributions estimated using clustering redshift in simulations, com-
pared to the true (black lines). Top panels show the redshift distributions; middle panels
show the ratio between the true N(z) and the N(z) estimated using clustering redshift;
bottom panels show the mean of the redshift distributions. Red lines represent the clus-
tering redshift estimates obtained using the estimator introduced by Eq. 4.15. Blue lines
represent the clustering redshift estimated obtained further correcting for the term bu(z),
which is only possible in simulations. The four different tomographic bins used in the
DES Y3 cosmological analysis are shown. We used redMaGiC galaxies as the reference
sample, binned using true redshifts. We also subtracted from the clustering redshift N(z)
estimates the expected magnification contribution in simulations. The redshift distribu-
tions are normalised over the same interval. Grey shaded regions indicate the interval
considered for the mean matching method. The mean of the distributions showed in the
bottom panels are computed only considering the grey intervals.
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Figure 4.7: Redshift distributions estimated using clustering redshift in simulations, com-
pared to the true (black lines). We both show the redshift distributions obtained using
redMaGiC galaxies as a reference sample, binned using their redMaGiC photo-z esti-
mates, and the ones obtained using BOSS/eBOSS galaxies as a reference sample. Mag-
nification effects have not been subtracted here. The redshift distributions have been
obtained using the estimator introduced by Eq. 4.15, without correcting for the bias of
the unknown sample bu. The grey bands show, as a comparison, the 1-σ region encom-
passed by the SOMPZ realisations.

and 5000 kpc4. We start from an idealised case: the distributions shown in
Fig. 4.6 are obtained using redMaGiC galaxies as a reference, but binned us-
ing true redshift. We have also subtracted magnification contributions to the
clustering estimator, using the best estimates values for the magnification
coefficients available in Buzzard. These have been estimated for redMaGiC
galaxies comparing two samples in simulations selected using magnified and
non-magnified fluxes, and ranges between αr = −2 and αr = 2 depending on
the reference bin considered. For the unknown sample, we assumed αu = 0
for all the four tomographic bins. In simulations we also dispose of an ac-
curate estimate of bu(z), obtained from the auto-correlations of each of the
tomographic bins of the unknown sample. This is not possible in data since
the precision of the photometric redshift is not sufficient to divide the sam-
ple in bins of adequate width. Fig. 4.6 shows the impact on the estimated

4We note that these scales are slightly larger than the ones adopted in the DES Y1
analysis (where we considered the range between 500 kpc and 1500 kpc). The main reason
for choosing slightly larger scales was due to the fact that here we model/correct for the
galaxy-matter bias evolution of the reference sample, and we preferred using slightly
larger scales where the linear bias assumption is more valid. Nonetheless, these scales
remain smaller than the ones used in the main cosmological analysis.
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n(z)s of assuming we know bu(z) with good accuracy, dividing Eq. 4.15 by
bu(z). We note that correcting for bu(z) drives both the shape of the dis-
tributions and the mean value closer to the truth. As we do not estimate
bu(z) in data, this introduces a systematic uncertainty in the method that
has to be quantified.

0.2 0.4 0.6 0.8
z

1.0

1.5

2.0

b r
(z

)

redMaGiC br(z)
inferred in sims

redMaGiC bins
redMaGiC bins + corr.
"true" bins

Figure 4.8: Redshift evolution of the galaxy-
matter bias br(z) of redMaGiC galaxies, es-
timated with different binning. In particu-
lar, the black line has been obtained binning
redMaGiC galaxies using the true redshift,
the solid light blue line has been obtained
binning redMaGiC galaxies using redMaGiC
photo-z. The lower amplitude is due to the
larger bin width of the redMaGiC bins due
to the photometric uncertainties. The light
blue dashed lines computed from the light
blue solid line after correcting for the larger
width of the bins.

Fig. 4.7 compares the n(z) dis-
tributions obtained with redMaGiC
and BOSS/eBOSS as reference sam-
ples. We produced Fig. 4.7 using
a more realistic setup: redMaGiC
galaxies have been binned into thin
bins using the redMaGiC photo-z
estimates rather than the true red-
shifts, we did not correct for the bias
evolution of the unknown sample,
we did not subtract the magnifica-
tion contribution. This plot high-
lights the differences between the
two samples, since redMaGiC has a
smaller statistical uncertainty, but
BOSS/eBOSS sample has a larger
coverage in redshift that helps cali-
brating the redshift distributions at
higher redshift. The distributions
are compatible within errors. We
note that in order to correct for the
bias evolution of the reference sam-
ple when using redMaGiC galaxies
as a reference, we had to apply a
correction to the width of redMaGiC
bins, as described by Eq. 4.5, to ac-
count for the broader distributions
that realistic redMaGiC bins have compared to a top-hat bin. Such correc-
tion is shown in Fig. 4.8.

In the following subsections, we tested the accuracy of our calibration
procedure using the two different approaches outlined in § 4.2: in a first case
using the mean redshift of the recovered n(z)as metric, and in the second
case using the whole shape of the redshift distributions.

78



4.4. RESULTS ON
SIMULATIONS

CHAPTER 4.
CLUSTERING-BASED

REDSHIFT ESTIMATES

Table 4.2: Mean-matching method, total systematic error budget for the two reference
samples used in this work. We also report the contribution due to each single source of
systematic, as a function of tomographic bin. As for the redMaGiC systematic, we also
report in parenthesis the values of the uncertainties we would have obtained if we had
not included the correction factor in the bias estimation (see text).

Systematic tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4
method: 0.002 ±0.002 0.001 ±0.002 0.000 ±0.001 0.001 ±0.002

magnification: 0.004 0.005 0.003 0.004
WL bias syst: 0.013 0.013 0.013 0.013

redMaGiC syst: 0.000 (0.014) 0.001 (0.007) 0.002 (0.000) 0.005 (0.003)

total systematic redMaGiC : 0.014 0.014 0.014 0.015
statistical redMaGiC : 0.002 0.002 0.001 0.002

total systematic BOSS/eBOSS: 0.014 0.014 0.014 0.014
statistical BOSS/eBOSS: 0.007 0.006 0.004 0.006

4.4.1 Method 1 (mean-matching): systematic uncer-
tainties estimation in simulations

We test in this section the mean-matching clustering-based photo-z calibra-
tion method. The metric used here to assess the accuracy of our methodol-
ogy is the difference between the mean of the recovered redshift distribution
and the true mean, defined as follows:

∆〈z〉 ≡ |〈z〉true − 〈z〉WZ |. (4.19)

In order to heavily reduce the impact of magnification effects, we compute
the mean over a restricted redshift interval of 2 standard deviations around
the mean of the SOMPZ distributions, i.e. 〈z〉SOMPZ − 2σSOMPZ < z <
〈z〉SOMPZ+2σSOMPZ. The extrema of the intervals considered throughout the
Chapter are [0.14, 0.62], [0.18, 0.80], [0.46, 0.94], [0.48, 0.94] for redMaGiC
and [0.10, 0.62], [0.18, 0.80], [0.46, 0.98], [0.48, 1.06] for BOSS/eBOSS. Given
the similarities between the SOMPZ distributions in simulations and in data
(Fig. 4.1), we also used the same intervals when applying our methodology
to the data.

Systematic uncertainties

We quantify here the systematic uncertainties of the mean matching method.
We recall that the absolute value of the terms in Eq. 4.15 are irrelevant for
this method, as we are only interested in how they evolve with redshift.
In principle, in absence of magnification, assuming perfect reference sample
redshift accuracy (e.g., redMaGiC redshifts to be exact), assuming that we
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are able to successfully estimate all the terms in Eq. 4.15, and assuming
that we know the galaxy-matter bias evolution of the unknown sample, we
should correctly recover the mean of the unknown redshift distributions.
The above assumptions might not hold when applying this methodology in
data, causing a systematic bias in the calibration, In particular, ∆〈z〉 can
differ from zero because of the following reasons:

• 1) the approximations that allowed us to factorize the integral in
Eq. 4.1 into br(z)bu(z)wDM(z), might not hold (e.g., linear bias model,
infinitesimally thin bins), leading to inaccuracies in the modelling at
small scales. We will quote this effect as methodology systematic;

• 2) Magnification contribution. In the mean matching approach, we do
not correct for magnification effects, as we cut the tails of the redshift
distributions. This systematic quantifies how effective our cut is. We
will refer to this has magnification systematic.

• 3) The clustering-based estimator ignores the redshift evolution of
the galaxy-matter bias of the unknown sample (weak lensing bias
systematic);

• 4) The reference sample is binned using photometric redshifts and not
spectroscopic redshifts. This only applies to the redMaGiC case. We
will refer to this as redMaGiC systematic.

We studied the performance of the estimator described in Eq. 4.15 for four
cases, starting from an ideal environment free of the effects of systematics
and introducing one uncertainty at the time, leading to a more complex,
realistic case. This allows us to estimate separately the magnitude of each
systematic independently. In the following tests, we will only use the red-
MaGiC galaxies as a reference sample to estimate the systematic uncer-
tainties. Indeed, the BOSS/eBOSS sample should be affected by the same
systematic uncertainties as the redMaGiC sample, except for the redMaGiC
systematic.

We begin with the most ideal case possible, shown in Fig. 4.6, which we
already described at the beginning of this section. We remind that for this
case we used redMaGiC galaxies as a reference binned using true redshifts,
we corrected for the bias evolution of the unknown and reference sample,
we corrected for the redshift evolution of the clustering of dark matter, and
we subtracted magnification effects assuming the fiducial values of αr and
αu. The ∆〈z〉 mean for this case provides an estimate of the methodology
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systematic, and it is reported in the first row of Table 7.1. This value is
compatible with zero within statistical uncertainty, indicating that for the
scales considered in this work (1500 to 5000 kpc), the approximation of
linear bias model and infinitesimally thin redshift bins are good enough for
the purpose of calibrating the mean with clustering information.

We then proceed estimating the systematic uncertainty due to magni-
fication effects. Since we have excluded the tails of the distributions, we
do not expect this to be an important systematic. Indeed, when adding
back the contribution due to magnification we subtracted in the precedent
case, we obtain an increase of ∆〈z〉 ∼ 0.002. To be more conservative,
we can try to estimate the impact on ∆〈z〉 if the data had different (and
potentially larger) values of αr and αu than the ones estimated in simula-
tions. We did this by computing the magnification term M(θ) assuming
αr ∼ N (0, 2) and αu ∼ N (0, 2), and propagating the scatter to the rel-
evant metric ∆〈z〉. We obtained a scatter on this metric of the order of
∆〈z〉 ∼ (0.004, 0.005, 0.003, 0.004) for the four tomographic bins. We note
that these values are up to a factor 10 smaller than what we would have
obtained by including the tails of the redshift distributions, justifying the
cut we introduced at the beginning of this section. To be conservative, we
decided to consider the values of ∆〈z〉 ∼ (0.004, 0.005, 0.003, 0.004) for the
magnification systematic in Table 7.1, rather than a value of ∆〈z〉 ∼ 0.002
estimated for the realisation of Buzzard used here.

We then quantify the impact on the mean redshift of ignoring the red-
shift evolution of the galaxy-matter bias of the unknown sample bu(z), as
this cannot be measured in data. Building up from the precedent case, we
estimate our redshift distributions without correcting for the bias evolution
of the unknown sample, and look at the difference in the mean redshift com-
pared to the previous case. The impact on ∆〈z〉 is quantified in Table 7.1,
and reads, for the four tomographic bins, ∆〈z〉 = (0.010, 0.013, 0.006, 0.001).
The effect on the mean and on the shape of the clustering redshift n(z) can
also be appreciated from Fig. 4.6, as the two clustering redshift n(z) esti-
mates only differ because of the bu(z) term.

Also in this case we decide to take a more conservative approach, moved
by the fact that the bias systematic is the dominant uncertainty of the
method. We assume the bias systematic to be the same in each tomographic
bin, and equal to largest value estimated in Buzzard, i.e., ∆〈z〉 = 0.013
estimated for the second bin.

Finally, we estimate the systematic uncertainty due to the fact that
redMaGiC galaxies are binned into thin bins using their photo-z estimates.
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This is done by comparing the mean of the clustering redshiftN(z) estimates
obtained binning the redMaGiC galaxies using true redshifts (as in the
previous case) to the estimates obtained by binning using redMaGiC photo-
z. The photo-z accuracy of redMaGiC galaxies is better than the one of
the weak lensing sample, but it is not as good as the one of a spectroscopic
sample. This can introduce some uncertainties in the recovered redshift
distributions. E.g., if all redMaGiC photo-z estimates were biased towards
lower redshift, we would expect the clustering redshift N(z) to be similarly
biased. Due to the non negligible scatter of redMaGiC photo-z, we also
expect the clustering-z N(z) to be smoother compared to the case where
the true redshift is used to bin the reference sample, as we cannot capture
fluctuations in the true N(z) over scales smaller than the intrinsic redMaGiC
photo-z uncertainty.

The values of the redMaGiC uncertainties are reported in Table 7.1.
These values are relatively small, indicating that the main effect of red-
MaGiC uncertainties is to smooth the recovered redshift distributions (as it
can be noticed by comparing Fig. 4.6 to Fig. 4.7), without strongly affecting
the mean. We also report in parenthesis the values of the uncertainties we
would have obtained if we had not included the correction factor (Eq. 4.5)
when estimating the galaxy-matter bias of redMaGiC galaxies: this indi-
cates that this correction constitutes an important factor that cannot be
neglected when applying this methodology to data.

Before reporting the total error budget for the mean matching method,
we further checked the assumption we made when fixing the cosmology for
the redshift evolution of the clustering of dark matter wDM(z). We checked
that assuming different values for the cosmological parameters ( Ωm = 0.4,
σ8 = 0.7) resulted in a shift of ∆〈z〉 < 10−3.

The systematic uncertainties evaluation performed in this section is key
to understand which are the systematics clustering methods are most sen-
sitive to. The total error budget is reported at the end of Table 7.1, and it
is obtained following the procedure adopted in the DES Y1 analysis (Gatti
et al., 2018; Davis et al., 2018) by adding in quadrature all the single source
of errors, assuming they are independent. As we already mentioned, the
dominant source of uncertainty is due to the potential redshift evolution of
the galaxy-matter bias of the weak lensing sample, which we do not model
in the current analysis.
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Figure 4.9: Mean redshift posteriors for the 4 tomographic bins obtained weighted by
the clustering information (WZ) through the mean matching method. Red histograms
represent the distribution of the mean redshift of the SOMPZ realisations, whereas light-
blue histograms show the mean redshift posteriors of the SOMPZ realisations using the
clustering-redshift likelihood. The mean redshifts of the SOMPZ realisations (black lines)
have been computed over a wide redshift interval (0 < z < 4), also including the redshift
range where there is no clustering information.

Validation

We apply in this subsection the mean-matching method to calibrate the
realisations of the redshift distributions from the SOMPZ method. We
recall that the SOMPZ method provides a number of realisations for the
redshift posteriors; we assign a weight to each of them through the likelihood
described by Eq. 4.16. As we have two reference samples, we combined the
likelihood obtained using the redMaGiC and BOSS/eBOSS samples; we
assumed the two likelihood were not completely independent, but that they
shared the weak lensing bias systematic.

The distribution of the mean redshifts of the SOMPZ realisations, be-
fore and after having being weighted by the clustering-redshift likelihood,
are shown in Fig. 4.9, compared to the true mean redshift. The mean
redshifts of the SOMPZ realisations are also reported in Table 4.3. The
results obtained by weighting without combining the two reference samples
are shown in Appendix A.2. It can be noted that the clustering informa-
tion little improves the constraints from the SOMPZ realisation, owing to
the better accuracy of the latter method. The constraints on the mean are
reported in Table 4.3.

This means that given the DES Y3 analysis setup, the mean matching
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Table 4.3: Simulations. The mean redshift estimates of the SOMPZ distributions with
and without clustering-based information, in simulations.

case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4
True 〈z〉: 0.315 0.513 0.743 0.910

SOMPZ 〈z〉: 0.314 ±0.013 0.505 ±0.011 0.746 ±0.014 0.907 ±0.012
SOMPZ + WZ (mean matching) 〈z〉: 0.315 ±0.012 0.506 ±0.009 0.741 ±0.012 0.904 ±0.012
SOMPZ + WZ (shape matching) 〈z〉: 0.313 ±0.014 0.507 ±0.010 0.747 ±0.014 0.910 ±0.013

method can only be used as independent cross-check of the SOMPZ method-
ology, but it does not significantly improve the constraints on the mean of
the redshift distributions.

4.4.2 Method 2 (shape-matching): systematic uncer-
tainties estimation in simulations

We discuss here the second method investigated in this Chapter to com-
bine the clustering information with the SOMPZ N(z) realisations. This
method involves forward modelling the full clustering signal across all the
redshift range covered by the reference samplse (i.e., including the tails of
the distributions). In practice, this allows us to constrain the full shape of
the redshift distributions, not only the mean.

Systematic uncertainty determination

First, we recall that in § 4.2 we described how the cross-correlation signal can
be modelled starting from an estimate of the redshift distributions (provided
by the N(z) realisations of the SOMPZ photo-z code) and the values of the
nuisance parameters of the model (the magnification parameters αu, αr,
and the bias of the unknown sample bu). The other ingredients of the model
are either measured from data (br(z)) or estimated assuming a cosmological
model (e.g., wDM(z)). Finally, we need to model the systematic uncertainty
of the method. We define the systematic uncertainty of the method as
the ratio between the measured correlation function wur(zi) and the model
ŵur(zi):

Systematic uncertainty(zi) =
wur(zi)

ŵur(zi)
. (4.20)

We evaluated such ratio in an interval that excludes the tails of the N(z),
as the ratio can be very noisy and might assume very large values where
wur(zi) is supposed to be small. As for the measured wur(zi), we used the
measurement in the most realistic scenario (i.e., for the redMaGiC sample,
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Figure 4.10: Systematic uncertainties of the shape-matching method as measured in
simulations following Eq. 4.20, for the 4 tomographic bins and for the two reference sam-
ples considered (redMaGiC upper panels, BOSS/eBOSS, lower panels). The measured
systematic uncertainties are represented by the light blue lines; the purple dashed lines
represent the best fitting model. The grey lines represent 10 random realisations of the
systematic uncertainty model assumed for the shape-matching method and described by
Eq. 4.21.

85



4.4. RESULTS ON
SIMULATIONS

CHAPTER 4.
CLUSTERING-BASED

REDSHIFT ESTIMATES

this involves using redMaGiC photo-z to bin the reference sample). The sys-
tematic uncertainty of the method, as a function of redshift and tomographic
bin, is shown in Fig. 4.10. The ratio deviates from unity due to systematic
effects, which are the same effects considered in the previous section (i.e,
method systematic, the redshift evolution of the galaxy-matter bias of the
unknown sample, and uncertainties in the redshifts of the reference sample).

For this method, we assume we can model the systematic uncertainty
shown in Fig. 4.10 by a function Sys (zi, {sk}) that varies smoothly with
redshift. Such function needs to have enough flexibility to fit properly the
systematic uncertainty measured in Buzzard. Moreover, we assume that the
overall root-mean-square (RMS) of the model Sys (z, {si}) measured in Buz-
zard is similar to what can be expected in data. For both the redMaGiC and
the BOSS/eBOSS samples, we found the RMS of the systematic function
for different tomographic bins to be RMS ∼ 0.10 − 0.155. To be conser-
vative, we imposed a Gaussian prior of RMS ∼ N (µ, 0.2) on the RMS of
the family of systematic functions described by Sys (zi, {sk})6. This also has
the consequence that the model never diverges. We chose the Sys (zi, {sk})
function to be given by:

log[Sys (zi, {sk})] =
∑
k<M

skPk(zi), (4.21)

with Pk(zi) the k-th Legendre polynomial, after remapping the redshift ar-
gument into the interval (-1,1), and M the maximum order considered. The
best fit model (obtained with the additional prior on the RMS of the sys-
tematic function) is shown in Fig. 4.10. The model is easily extrapolated
beyond the range used for the fit, showing no sign of divergence. We set
the maximum order of Legendre polynomials to be M = 5, as including
the next two higher order terms did not further improve the fit. Last, we
add a small amount (4 per cent of the clustering signal) to the clustering
covariance, as we noted that this made the χ2 of the best fitting systematic
function closer to unity (otherwise the χ2 was slightly larger), even though
this addition does not significantly impact the methodology.

We note that compared to the mean matching method, in this case we
did not try to characterise each individual source of systematic uncertainties
as it would have increased unnecessarily the complexity of the modelling.

5In particular, we measured the RMS of the systematic uncertainties for the 4 to-
mographic bins to be (0.11,0.07,0.07,0.11) for redMaGiC and (0.18, 0.15, 0.10, 0.15)
BOSS/eBOSS.

6In practice, this is achieved imposing a Gaussian prior on each of the parameters sk.
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On the other hand, the model for the systematic uncertainties is flexible
enough to fully describe the systematic uncertainties found in the simulation.
In Fig. 4.10 we also show few examples of systematic functions obtained
random sampling Sys (zi, {sk}) with the constrain on its RMS (in grey),
alongside with the best fit found in simulation (in purple). This illustrates
the flexibility of our model for the systematic uncertainty, which is able to
model a large variety of curves. The other important feature is that the
curves never diverge, and the logarithm of the curves is mostly confined in
a horizontal band around zero.

We can compare this method with the mean matching method by looking
at the impact that assuming different values of the systematic uncertainty
model has on the mean of the N(z) distributions. In particular, this can be
done by drawing many (e.g., ∼ 1000) realisations of Sys (zi, {sk}), consider-
ing the mean of the true distribution multiplied by a given realisation of the
systematic function and looking at the ∆z with respect to the true distribu-
tion. To facilitate the comparison with the previous section, we computed
∆z in the same interval (2-σ around the mean) it was computed for the
mean matching method. We obtained a typical ∆z ∼ 0.010−0.015 depend-
ing on the tomographic bin, in very good agreement with the systematic
uncertainties estimated for the mean matching method.

Validation

Once our family of systematic functions is determined for the shape-matching
method, we proceed to compute the likelihood of the SOMPZ {npz,ku (zi)}
realisations in simulations. The likelihood obtained for the two reference
samples is combined, and is always computed over the full range of red-
shifts available, i.e., including the tails of the distributions, when possible.
In order to compute the likelihood we need to evaluate the magnification
parameters αu, αr. We analytically marginalise over αu (see Appendix A.2
for more details). We cannot marginalise over the sets of αr, as these pa-
rameters will be included in the cosmological analysis. We later verify in
this section that the exact value of αr does not change much the outcome
of the shape-matching method, so throughout the rest of this section we
assumed the fiducial values of αr as estimated for the Buzzard simulation.

The outcome of the shape-matching likelihood is shown in Fig. 4.11.
As expected from the results of the mean matching method, the cluster-
ing information does not help tightening the scatter on the mean of the
distributions (lower panels and Table 4.3). On the other hand, the shape-
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Figure 4.11: Upper panels: SOMPZ redshift distributions, as estimated in simulations,
with and without clustering information (shape-matching method). The violin plots
encompass the statistical and systematic uncertainties of the distributions. Lower panels:
Mean redshift of the SOMPZ N(z) realisations, with and without clustering information.
The black line represents the true mean redshift.

matching likelihood does tighten the scatter on the shape of the SOMPZ
distributions, as it can be noted from the upper panels. This is because the
SOMPZ method suffers from cosmic variance, as the SOMPZ N(z) realisa-
tions are estimated from relatively small deep fields, whereas the correlation
functions are measured over the full DES Y3 footprint. Although the clus-
tering signal is dominated by the weak lensing bias systematic uncertainty,
such systematic is slowly varying as a function of redshift, and does not
have “peaky” features typical of cosmic variance. This means that the weak
lensing bias systematic maximally affects the mean of the distribution, but
it affects less the higher moments of the redshift distributions (Table 4.3).

Finally, we verify that the exact value of the the parameters αr or the
cosmology assumed to compute wDM does not impact the methodology.
We found that assuming a wrong cosmology or αr = ±2 had a negligible
impact on the mean of the SOMPZ distributions weighted by the clustering
likelihood; on the other hand, the shape matching method was still able to
reduce the scatter in the shape of the SOMPZ distributions.
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Figure 4.12: Redshift distributions estimated using clustering redshift in data. We
both show the redshift distributions obtained using redMaGiC galaxies as a reference
sample, binned using their redMaGiC photo-z estimates, and the ones obtained using
BOSS/eBOSS galaxies as a reference sample. Magnification effects have not been sub-
tracted here. The redshift distributions have been obtained using the estimator intro-
duced by Eq. 4.15. The grey bands show, as a comparison, the 1-σ region encompassed
by the SOMPZ realisations.
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Figure 4.13: Mean redshift posteriors for the 4 tomographic bins obtained using the mean
matching method. Red histograms represent the distribution of the mean redshift of the
SOMPZ realisations, whereas light-blue histograms show the mean redshift posteriors of
the SOMPZ realisations using the clustering likelihood. The mean redshift of the SOMPZ
realisations has been computed over a wide redshift interval (0 < z < 4), also including
the redshift range where there is no clustering information.
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4.5 Application to data

We present the clustering-based redshift estimates on data in Fig. 4.12.
These have been estimated following Eqs. 4.14, 4.15. We show the distri-
butions obtained with the two reference samples, and as a comparison, the
1-σ region encompassed by the SOMPZ realisations. Note that for the clus-
tering redshift estimates obtained using redMaGiC galaxies we applied the
correction to the galaxy-matter bias of the reference sample described by
Eq. 4.5, using the fraction of the redMaGiC galaxies with a spec-z counter-
part. As redMaGiC galaxies with spec-z counterparts tend to have brighter
magnitudes compared to the full redMaGiC sample, we have applied a mag-
nitude re-weighting to those galaxies before computing the correction, so as
to have a representative redMaGiC subsample with spec-z information.

We first checked that the redMaGiC and BOSS/eBOSS estimates were
in agreement with each other within uncertainties. We computed the mean
of the two clustering based redshift distributions in the redshift interval
where the two samples overlap, also excluding the tails (as detailed at the
beginning of § 4.4.1). We measured a mean redshift difference between
the estimates obtained with redMaGiC galaxies and BOSS/eBOSS galaxies
of (−0.009± 0.010, 0.006± 0.009, 0.005± 0.006, 0.022± 0.014), for the four
tomographic bins. The quoted uncertainties take into account the statistical
and systematic uncertainties as reported in Table 7.1, except for the weak
lensing bias systematic that is assumed to be shared by the two samples. We
note that the statistical uncertainty for the last tomographic bin is roughly
as twice as large in the data compared to the simulations, due to a broader
N(z). On the other hand, the other tomographic bins show more similar
levels of statistical uncertainty.

We then show the results of the application of the mean-matching like-
lihood to data, in Fig. 4.13. We first checked that the mean redshifts of the
clustering-based distributions obtained with the two reference samples were
individually in agreement with the ones estimated from the SOMPZ realisa-
tions (this comparison is shown in Appendix A.2). Then we proceeded with
the mean-matching likelihood. As expected from the tests on simulation,
the clustering-based estimates only slightly tighten the mean redshift distri-
butions from the SOMPZ realisations. The mean redshifts of the SOMPZ
realisations with and without being weighted by the clustering likelihood
are reported in Table 4.4.

We last show the results of the application of the shape-matching likeli-
hood to data. We assumed fiducial values for the magnification parameters
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Table 4.4: Data. The mean redshift estimates of the SOMPZ distributions with and
without clustering-based information.

case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4
SOMPZ 〈z〉: 0.315 ±0.013 0.508 ±0.012 0.741 ±0.015 0.937 ±0.014

SOMPZ + WZ (mean matching) : 0.314 ±0.012 0.511 ±0.010 0.746 ±0.012 0.936 ±0.012
SOMPZ + WZ (shape matching) : 0.319 ±0.014 0.510 ±0.011 0.746 ±0.015 0.934 ±0.014

in data, as estimated using Balrog (Suchyta et al., 2016). We checked, how-
ever, that assuming values for the magnification parameters in the range
αr = ±2 did not have any relevant effect on the mean of the SOMPZ red-
shift distributions. The mean redshifts are reported in Table 4.4, showing
consistency with the results from the mean-matching method. In this case,
the clustering information does not tighten significantly the mean redshift
constraints. On the other hand, as demonstrated in the tests on simulated
data, the shape-matching likelihood does help tightening the shape of the
SOMPZ N(z) distributions, which is uncertain due to cosmic variance. This
is shown in the upper panels of Fig. 4.14: the violin plots obtained weight-
ing the SOMPZ realisations by the shape-matching likelihood have a smaller
amplitude compared to the case of no weighting.

The shape-matching method is the fiducial method implemented in the
DES Y3 cosmological analysis; the mean matching method is just used as
cross-check. We remind the reader that the final DES Y3 redshift calibration
strategy includes an additional step, not addressed here: once the SOMPZ
realisations have been informed by the clustering-based estimates, they are
further constrained by the “shear-ratio” test (Prat et al., 2020) during the
cosmological inference process. This additional step uses complementary
information with respect to the clustering estimates used here, and it does
help tightening the uncertainties in the SOMPZ redshift distributions al-
ready weighted by the shape-matching likelihood.

4.6 Conclusions

We have presented the calibration of the Dark Energy Survey Year 3 (DES
Y3) weak lensing source galaxy redshift distributions from clustering mea-
surements. In particular, we cross-correlated the weak lensing source galax-
ies sample with redMaGiC galaxies (luminous red galaxies with secure pho-
tometric redshifts) and BOSS/eBOSS galaxies (with spec-z estimates) di-
vided into thin redshift bins. We used the measured cross-correlations to
inform the posterior of the redshift distributions from the fiducial DES Y3
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Figure 4.14: Upper panels: SOMPZ redshift distributions, as estimated in data, with and
without clustering information (shape-matching method). The violin plots encompass the
statistical and systematic uncertainties of the distributions. Lower panels: Mean redshift
of the SOMPZ N(z) realisations, with and without clustering information.

photo-z code (SOMPZ). This is achieved using two methods: a method
that focuses on the mean of the redshift distributions (mean-matching),
and another method that forward models the full clustering signal (shape-
matching), modeling the full shape of the redshift distributions.

We characterised the systematic uncertainties of each method in simu-
lations. We found that both methodologies are limited by the lack of mod-
elling of the redshift evolution of the galaxy-matter bias of the unknown
sample, and that they are estimated to recover the mean redshift of the
distributions with a redshift accuracy of ∼ 0.015. We found that for the
DES Y3 analysis, the clustering information does not help much tightening
the scatter on the mean of the SOMPZ distributions, given the superior
constraining power of the latter. On the other hand, the shape-matching
method does significantly tighten the scatter of the shape of the SOMPZ
realisations. This is due to the fact that the SOMPZ realisations suffer from
cosmic variance, as they are estimated from relatively small deep fields; as a
consequence, SOMPZ realisations show the characteristic “peaky” features
typical of sample variance, which are reduced by the combination with the
clustering measurements. For this reason, the shape-matching method is
the fiducial method implemented in the DES Y3 cosmological analysis; the
mean-matching method is only used as cross-check.
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We then presented the clustering-based calibration on data, finding con-
sistent results with our simulation tests. We remind the reader that the
final DES Y3 redshift calibration strategy includes an additional step, not
addressed here: once the SOMPZ realisations have been informed by the
clustering-based estimates, they are further constrained by the “shear-ratio”
test during the cosmological inference process.

Despite the limits of the current clustering-redshift techniques, they still
represent one of the most credible alternative to standard photo-z methods
for the new, upcoming generation of data sets, which will be deeper than the
current data sets and therefore harder to calibrate using photo-z methods.
In this respect, clustering techniques will not be particularly affected by
the increased depth of the samples. One of the key aspects that requires
additional work is the modelling of the evolution of the galaxy-matter bias
of the unknown sample. In principle we believe we could be able to constrain
it to some level by measuring the auto-correlation of the unknown sample in
small deep fields with good photometry and redshift estimates. This possible
improvement is left to future work. We also note that for the final DES Y6
analysis we plan to combine the clustering-based and photo-z estimates in a
more principled way, using the hierarchical Bayesian methodology developed
by Sánchez & Bernstein (2019) and Alarcon et al. (2019).

93



4.6. CONCLUSIONS CHAPTER 4.
CLUSTERING-BASED

REDSHIFT ESTIMATES

94



Part III

Shape Catalogue

In this part we present the official DES Y3 shape catalogue used for the
main DES Y3 cosmological analysis, along with a battery of systematic

tests performed to assess the quality of the catalogue. The DES Y3 shape
catalogue contains ∼ 100 million shapes, constituting the largest weak
lensing shape catalogue to date. The work presented in this Chapter is

going to be published in Gatti, Sheldon et al. (DES collaboration) together
with the DES Y3 cosmological results.
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Chapter 5

DES Y3 shape catalogue

5.1 Introduction

The measurement of weak gravitational lensing is an important component
for constraining dark energy with current and planned imaging surveys (e.g.
Kuijken et al., 2015; Takada, 2010; DES, 2005; Ivezic et al., 2008; Laureijs
et al., 2011; Spergel et al., 2015). For the Dark Energy Survey (DES, 2005;
Flaugher et al., 2015), weak lensing is one of four “key probes”, the others
being galaxy angular clustering, galaxy cluster abundances, and type IA
supernovae distances. With these combined probes, DES will constrain
cosmological parameters such as the dark energy equation of state parameter
w with high precision. The goal of this work is to present empirical tests of
the weak lensing measurements performed on the DES year 3 data set (DES
Y3) in order to assess systematic errors that may degrade this precision.

Weak gravitational lensing is the deflection of light as it passes by mass
concentrations in the universe (Schneider et al., 1992). The distant objects
observed in our images appear in a different location than they would had
their light passed through a homogeneous universe. This deflection can be
inferred only in the rare cases that the unperturbed light path is known, for
example in strong lens systems with multiple images of the source (Walsh
et al., 1979). There is a higher order effect that can be inferred without such
knowledge: the light deflections differ slightly across the face of a galaxy,
resulting in a small distortion of the image. This distortion induces an
ellipticity that is directly related to the mass concentrations that caused the
deflections. This weaker “shear” effect results in a departure from isotropy
in the orientations of galaxies that is spatially coherent: the ellipticities of
galaxies become correlated on the sky (see, e.g. Bartelmann & Schneider,
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2001, and references therein).
Because the shear is directly related to the lensing mass, the effect can

be cleanly predicted given an accurate model of the mass concentrations.
In turn, the distribution of matter in the universe inferred by modelling the
shear signal depends sensitively on the cosmological parameters, such as the
mass density Ωm and the equation of state of dark energy (Hoekstra & Jain,
2008).

In the past decades a large variety of methods to infer the value of the
shear field have been developed. Many of them use galaxy ellipticies as
a proxy of the shear field, which usually involves assigning a set of num-
bers to each galaxy describing the observed galaxy light profile, once having
assumed a galaxy model. In order to infer the shear from measured elliptici-
ties, one must therefore understand how the intrinsic ellipticities of galaxies
are modified by gravitational shear, as well as other more mundane effects
such as the point spread function of the atmosphere, telescope, and detector
(Bernstein & Jarvis, 2002). In addition, there are often biases present in
the determination of the shape itself due to noise rectification or model mis-
specification (Hirata et al., 2004; Refregier et al., 2012b; Melchior & Viola,
2012b; Bernstein, 2010). We note that there exist methods to infer the shear
field that do not require a per-galaxy shape estimate, which allows to avoid
model biases (e.g., Schneider et al. 2015, or the BFD algorithm proposed by
Bernstein et al. 2016). None of these methods are considered in this work,
but we are planning to implement BFD in future DES shape catalogues.

We can generally divide biases in the shear determination into two broad
categories: additive and multiplicative biases. Following standard notation
(Mandelbaum et al., 2014), we can write an estimate of the two-component
shear as:

γest = mγ + c, (5.1)

where γest is a biased estimate of the true shear γ. We call m the multi-
plicative and c the additive, or shear independent bias.

These biases can arise from a number of different causes. PSF-misestimation
can contribute to both multiplicative and additive biases: if the size of the
PSF is misestimated, a multiplicative bias will occur. If the ellipticity of the
PSF is misestimated, an additive bias will occur that is related to the PSF
orientation. Another cause of multiplicative bias is calibration errors in the
shear estimation algorithm itself, the method for converting an ensemble of
ellipticity measurements into an estimate of a shear signal. This can occur
for a number of reasons, for example if the shear is not accurately inferred
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from the observed shapes due to aforementioned modelling errors or noise
effects, or if any applied empirical or simulation based corrections have lim-
ited accuracy. In addition, selection and detection effects can contribute
significant shear-dependent or PSF-dependent biases (Kaiser, 2000; Bern-
stein & Jarvis, 2002; Bernstein et al., 2016; Hoekstra et al., 2017; Sheldon
& Huff, 2017).

In this Chapter we present the weak lensing shape catalogue measured
in DES Year 3 (DES Y3) imaging data, and perform empirical tests of the
catalogue in order to access potential biases. We focus on empirical tests of
bias. Our primary tool is the “null test”: we generate measurements that
should yield zero signal in the absence of biases in the shape catalogue. For
example, if our PSF modelling is accurate we should detect no correlation
between object ellipticities and PSF ellipticities. Similarly, we should see no
correlation between object ellipticities and unrelated quantities such as the
location of an object’s image within the focal plane and observing conditions.

The work presented in this Chapter is complemented by two papers in
preparation. The first one describes in more depth the PSF modeling used
in the DES Y3 analysis (Jarvis et al., 2020), and presents a number of
diagnostic tests that are independent of the shape catalogue. The second
work (MacCrann et al., 2020) describes the suite of image simulations used
to provide the overall calibration of the catalogue. Indeed, some biases are
difficult to test empirically due to the lack of an absolute calibration source
for shear. In particular, noise and modelling biases, or biases that remain
after applying an empirical calibration correction. For tests of the absolute
calibration we therefore rely on simulations (MacCrann et al., 2020).

The specific method we employ for shear estimation in DES Y3 is meta-
calibration1 (Huff & Mandelbaum, 2017; Sheldon & Huff, 2017). This
method is known to be unbiased for isolated galaxy images in the limit of
weak shear and in the case of perfect knowledge of the PSF. Metacalibra-
tion empirically corrects for noise, modelling, and selection biases (Sheldon
& Huff, 2017). However, metacalibration will suffer a bias due to some
of the effects mentioned above, for example PSF misestimation, and we will
test such biases in this work. The blending of galaxy images produces a
calibration bias that is not addressed by the metacalibration implemen-

1In particular, we used the following packages:

• ngmix: v1.0.0, https://github.com/esheldon/ngmix

• ngmixer: v0.9.6, https://github.com/esheldon/ngmixer
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tation used for DES Y3, and which is large enough that cannot be ignored
for the DES Y3 analysis. In future releases we will apply empirical correc-
tions using the metadetection method presented in Sheldon et al. (2019).
For DES Y3, we instead rely on the aforementioned simulations to derive a
correction.

Contrary to the DES Y1 analysis where two different shape catalogues
were produced with two different pipelines (Zuntz et al. 2018), we only rely
on one shape catalogue in the DES Y3 analysis. Despite the fact that having
two different catalogues in the DES Y1 analysis increased our confidence in
the robustness of the catalogues calibration, the DES Y3 shape catalogue is
backed up by a much more powerful and accurate suite of image simulations
(MacCrann et al., 2020) compared to those used in the DES Y1 analysis.
These image simulations replicate with high fidelity the features and prop-
erties of the DES Y3 shape catalogue, making us confident of the catalogue
calibration.

The outline of the Chapter is as follows: in § 5.2 we outline the new
observations used in the Y3 analysis, and present improvements compared
to DES Y1 observations. Updates concerning PSF modelling and PSF esti-
mation tests are presented in § 5.3. In §5.4 we discuss few technical aspects
of the metacalibration algorithm implemented in the DES Y3 analy-
sis. In § 5.5 we discuss systematic tests associated to the PSF modelling,
and in § 5.6 we present null tests of the shape catalogue, including shear
variations in focal plane coordinates (§ 5.6.1), tangential shear around field
centers (§ 5.6.2), stellar contamination of the catalogue (§ 5.6.3), B-modes
tests (§ 5.6.4), galaxy properties, and observing conditions tests (§ 5.6.5).
In § 5.7 we summarise our results.

5.2 Data

5.2.1 New observations and footprint

The DES Y3 data represent a significant increase in total area compared to
the Y1 data, with a similar depth. Slightly modified Data Management set-
tings have lowered the threshold for detection (Sevilla-Noarbe et al., 2020),
enabling an increase in the number of objects, more than expected from
the increased area and depth alone. The effective area of the wide sur-
vey with observations in the griz bands, after masking for foregrounds and
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other problematic regions2, is ∼4143 deg2, compared to the ∼1321 deg2

for the Y1 cosmic shear results (Troxel et al., 2018). The area coverage
is shown in Fig. 5.1. Object selection additionally required that the object
belonged to the Gold catalogue (Sevilla-Noarbe et al., 2020), that it was not
marked as ‘anomalous’3 and that it was successfully measured and where
necessary, deblended by the multi-object fitting code, which simultaneously
fits blended groups or isolated objects in the full multi-epoch, multi-band
dataset (Sevilla-Noarbe et al., 2020). This resulted in a final catalogue of
326,049,983 objects. For weak lensing, further cuts were performed using
quantities measured as part of the metacalibration procedure. For de-
tails see § 5.4.2.

Figure 5.1: Footprint of the DES Y3 shear
catalogue. The Y3 catalogue is shown in
blue. For comparison the SV and Y1 foot-
prints, which are nearly subsets of the Y3 are
overplotted in red and green respectively.

The Y3 dataset includes other
improvements, such as ∼ 0.003
magnitude photometric accuracy,
better object flagging in the coadd
catalogues, and a more complete ar-
ray of survey property maps, see
Sevilla-Noarbe et al. (2020) for de-
tails.

5.2.2 Astrometry

Linearised astrometric solutions were
derived for the pixels surrounding
each Y3 target galaxy using meth-
ods similar to those of the Y1
reductions (Sevilla-Noarbe et al.,
2020). Substantially improved so-
lutions were, however, available for
Y3 using the characterization of the
DECam astrometric distortions de-
rived in Bernstein et al. (2017). The
new solutions incorporated small-
scale distortions due to stray electric fields in the detectors, and were regis-
tered to the Gaia DR1 catalogue (Gaia Collaboration, 2016). The dominant
sources of astrometric calibration error are the 5–10 milliarcsec distortions
induced by atmospheric turbulence in a typical exposure, with a smaller

2FLAGS FOREGROUND=0 and FLAGS BADREGIONS< 2
3FLAGS GOLD< 8
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contribution from proper motions of the reference stars during the ≈ 2-year
span of the imaging. The improved astrometric solutions were applied to
both the PSF determination and to the metacalibration input postage
stamps.

5.2.3 Blinding of the catalogue

A two-stage blinding procedure was adopted in the DES Y3 analysis to
mitigate confirmation bias and avoid that experimenters (intentionally or
unintentionally) tune the analysis to match expectations. A good blinding
scheme must be capable of altering the output of the analysis without com-
promising the performance of systematic tests and pipeline validation. In
particular, for the DES Y3 analysis we adopted a blinding scheme both at
the shear catalogue level and at the summary statistics level.

The blinding of the shear catalogue was performed in a similar fashion
to the DES Y1 analysis (Zuntz et al., 2018). The ellipticities e of the
catalologue were transformed via |η| ≡ 2arctanh|e| → f |η|, with a hidden
value 0.9 < f < 1.1. This mapping preserved the confinement of the e
values to the unit disc while rescaling all inferred shears.

The preliminary (non-published) results shown throughout this Chap-
ter have been obtained using the blinded version 3.30.20 of the DES Y3
catalogue.

5.3 PSF modelling and estimation

5.3.1 PSF Measurement and Interpolation using PIFF

For modeling the point-spread function (PSF), a new software package, Piff
(PSFs In the Full FOV)4 was used. The full details of this software are
described in Jarvis et al. (2020), but here we give an overview of some
salient features used in the DES Y3 analysis.

Piff has a number of available models it can use to describe the PSF at
any given location, as well as a number of possible interpolation schemes to
calculate the coefficients of the model at different locations. For DES Y3,
the PixelGrid model was used, which involves a grid of pixels, each with an
independent amplitude at their centers. The amplitudes of the PSF between
pixel centers were found using Lanczos interpolation (in particular, we used

4Specifically, the PSF modeling used release version 0.2.2.
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Lanczos interpolation kernels up to 3rd order). For DES Y3, we used for
the model pixels of 0.3 arcsec on a side, slightly larger than the native
image pixels (0.27 arcsec). It was found that this significantly increased
the stability of the fits and reduced the prevalence of noise artifacts in the
solutions.
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Figure 5.2: The distribution of the median
seeing FWHM of the stars used to model the
PSF in the riz-bands. The median seeing
for the distributions shown is 1.05” in the r-
band, 0.97” in the i-band and 0.93” in the
z-band. The overall median seeing is 0.98”.

To interpolate the PSF model
at other locations besides the lo-
cations of the stars, a 3rd order
BasisPolynomial was used, which
delayed the solution of the model
coefficients for each star until also
solving for the interpolation coeffi-
cients. This helped handle moder-
ately degenerate solutions for some
stars (e.g. stars with masks that
cover one or more of the model pix-
els), as it allowed for all of the other
stars help to constrain the overall
fit.

Piff models the PSF in sky co-
ordinates, rather than image coor-
dinates. We used the PIXMAPPY 5

astrometric solutions to map from
image coordinates to sky coordinates. This was a particularly important im-
provement over the Y1 PSF models, since the DES images have significant
tree rings (Estrada et al., 2010; Plazas et al., 2014b,a), where the jacobian
of the astrometric solution changes significantly across regions with only a
few stars. When the modeling is done in sky coordinates, these variations
can be removed using the highly accurate astrometric solutions, so these
variations did not need to be included in the PSF interpolation.

5.3.2 Selection of PSF stars

Similar to Zuntz et al. (2018), the initial selection of candidate PSF stars
used a size-magnitude diagram of all the objects detected per image. For
the magnitude, we used the SEXTRACTOR (Bertin & Arnouts, 1996b) mea-
surement MAGAUTO. For the size, we used the scale size as measured with

5https://github.com/gbernstein/pixmappy

103



5.4. THE METACAL-
IBRATION SHAPE
CATALOGUE

CHAPTER 5. DES Y3
SHAPE CATALOGUE

Ngmix (Sheldon, 2015). The stars were easily identified in each exposure
(and for different bands) at bright magnitudes as a locus of points with size
nearly independent of magnitude. On the other hand, the galaxies have a
range of sizes, all larger than the PSF size. The candidate PSF stars were
taken to be this locus of objects from about m ≈ 16, where the objects
begin to saturate, down to m ≈ 22, where the stellar locus merges with the
locus of faint, small galaxies.

From the list of candidate stars, we removed objects that were not suit-
able to use as models of the PSF. In Y1, we removed all objects within 3
magnitudes of the faintest saturated star in the same CCD exposure. This
was done to avoid the interaction of charges in CCDs with the already ac-
cumulated charge distribution, which can cause an increase of observed size
with flux, an effect also known as the “brighter-fatter effect” (Antilogus et al.
2014; Guyonnet et al. 2015; Gruen et al. 2015; Coulton et al. 2018; Lage
2019; Astier et al. 2019; see § 5.5.1). For DES Y3 we exploited the correction
described in Antilogus et al. and implemented for DECam/DES in Gruen
et al. (2015) as part of the initial image processing (but see Coulton et al.
2018 for an alternative correction method). The correction has been applied
after flat fielding and before the sky correction, which reduced the level of
this effect seen on the images and allowed the selection of brighter stars. In
particular, we imposed a lower magnitude limit which varies between CCD
exposures and band considered, but typically of magnitude ∼ 16.5 (to be
compared to the Y1 cutoff at ∼ 18.5). More details are provided in Jarvis
et al. (2020). In the final star catalogue, each star has different entries for
each exposure (and therefore band), as the DES Y3 PSF model is different
for each exposure. Out of all the stars passing these selection cuts, we did
not use ∼ 20% of the stars to model PSF and used them for diagnostic tests
(§ 5.5.3).

In Fig. 5.2, we show the distribution of the median measured full-width
half-maximum (FWHM) for the PSF stars used in our study, restricted to
the exposures used for shear measurements. The overall median seeing is
0.98”.

5.4 The METACALIBRATION shape cata-

logue

In this section we discuss few more technical aspects of the metacali-
bration algorithm implementation used for the DES Y3 analysis, as the
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algorithm has already been introduced in § 3.1.3.

5.4.1 Differences Between the Y3 and Y1 Catalogues

The metacalibration shape catalogue differs from DES Y1 in the follow-
ing ways:

• PIFF PSF solutions were used for the metacalibration deconvo-
lutions rather than the PSFEx solutions that were used for Y1 (See
§5.3.1).

• The jacobian of the world coordinate systems (WCS) transformation
was taken from the pixmappy astrometry solutions (see §5.2.2).

• We altered the weak-lensing selection criteria (see §5.4.2).

• We applied an inverse variance weight to galaxies (see §5.4.3).

In addition to these differences, we also applied a calibration correc-
tion (2-3%) to the catalogue based on simulations MacCrann et al. (2020).
This correction mostly calibrates a shear-dependent detection bias which af-
fects the shear estimates when objects are blended. We do not expect the
aforementioned detection related biases to be addressed by the tests in this
Chapter. The tests presented herein are mainly sensitive to additive shear
biases. The multiplicative biases we can test empirically, e.g. those due to
PSF measurement errors, are independent of the detection effects mentioned
above. A short description of the absolute calibration corrections from im-
age simulations is given in § 5.4.5, but we refer the reader to MacCrann
et al. (2020) for a more detailed discussion.

5.4.2 Object Selection from the METACALIBRATION
Catalogue

Here we discuss the weak lensing selection employed in all the DES Y3 shear
analyses. Additional selections in analyses, such as tomographic binning,
incur selection biases that must be accounted for with the selection response,
Rs .

We performed metacalibration measurements on all objects detected
by SExtractor in the DES coadds, using the riz bands. We excluded the
g band measurements due to known issues in the estimation of the PSF
(see Jarvis et al. 2020 for a discussion). The Y3 detections are significantly
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Figure 5.3: Shear bias from contamination by unresolved binary stars. Left shows the cut
applied to isolate unresolved binaries from the population of objects in in our catalogue
with measured |e| > 0.8, centre shows objects from above the cut, which have galaxy
colors, and right shows objects below the cut, which have stellar colors.

different from those in Y1 due to changes to the SExtractor configuration
that resulted in a more pure and complete catalogue (Sevilla-Noarbe et al.,
2020). A small subset of objects (less than a percent) were not measured due
to lack of data in one or more bands, typically near the survey boundaries.

For objects processed with metacalibration, we made the following
further selections:

• The object measurements had to belong to the unmasked regions of
the DES Y3 Gold catalogue after problematic regions have been re-
moved and had not to be marked as “anomalous” (Sevilla-Noarbe
et al., 2020). These selections should be nearly shear independent.

• We selected objects with 10 < S/N< 1000, as determined by the
Gaussian fit to the unsheared image. The S/N definition is the same as
used in (Zuntz et al., 2018). The low cut limited faint objects impacted
by detection biases. The high cut removed very bright objects, for
which Poisson noise could create fluctuations larger than the typical
background noise, erroneously flagging the detections as problematic6.

• We selected the objects with galaxy to PSF size ratio T/TPSF > 0.5,
as in DES Y1, to reduce the impact of PSF modeling errors. T is a
measure of the size squared of the object before convolution by the
PSF. T is defined the same way as in (Zuntz et al., 2018), as the

6In the implementation used for the DES Y3, matched pixels from different single
epoch postage stamps of a detected object were compared, and if some of the values were
too far from the median, the object was rejected.
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trace of the covariance matrix fit to the unsheared image. The TPSF,
determined by metacalibration is the size squared of the PSF, also
from a Gaussian fit.

• We imposed the selection T < 10, which removed the largest objects.
By visual inspection, many of these detections are not large objects,
but their size estimate is affected by the light emitted by close, large
neighbours.

• We excluded the objects characterised by T > 2 and S/N < 30 simul-
taneously. These relatively large, faint objects are mostly blends upon
visual inspection, and their inclusion could potentially introduce large
biases in the catalogue.

• We limited the objects to those for which the most reliable for photo-
metric redshifts could be obtained: 18 < i < 23.5, 15 < r, z < 26 and
fine-tuning against any outlier colours with −1.5 < r, z − i < 4.

• We imposed a selection to limit the binary star contamination of the
galaxy catalogue. For high-ellipticity objects of the shape catalogue,
unresolved binary stars could contribute significantly and are difficult
to distinguish from galaxies. Following Hildebrandt et al. (2017), we
cut our high ellipticity (|e| > 0.8) shape catalogue in r magnitude –
size (T ) space according to: log 10(T ) < (22.5− r)/2.5 (see left panel
of Fig. 5.3). Color-color plots of these objects more closely follow a
stellar locus than the remainder of the catalogue (central and right
hand panels of Fig. 5.3). We hence inferred that these were indeed
unresolved binary stars and removed them from the shape catalogue.
These objects constituted 20% of the |e| > 0.8 objects in the shape
catalogue before their removal.

All the selections described here are combined using logical conjunction
to obtain our final weak lensing selection. Except for the first selection,
all the others are shear dependent and can induce a selection bias that can
be corrected for using the selection response term Rs. We recall that in
the current implementation of metacalibration detection effects are not
corrected for by any selection response terms, and need to be calibrated for
using image simulations. The selection discussed here constitutes a reliable
weak lensing selection and is applied for all tests detailed in this Chapter,
as well as further studies. The number of objects passing this selection is
100,202,538.
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5.4.3 Inverse variance weight

An estimator of a shear signal is usually a linear combination of individual
galaxy shapes. In that linear combination, one can assign equal weight
to each galaxy or alternatively, a different weight wi to each galaxy. A
change of that weight with shear could introduce selection biases which,
however, can be corrected by the metacalibration formalism if the weight
is determined from quantities also measured on artificially sheared versions
of the galaxy image. For minimising the variance of the measured shear
signal, it can be shown that the weight should be proportional to the inverse
of the variance of the shear estimated from each galaxy.

The variance of mean shear estimated from a sample of galaxies as in
Eq. 3.6 is

σ2
γ = σ2

e〈Rγ〉−2 , (5.2)

where σ2
e is the variance of e7, including intrinsic and measurement-related

shape noise. While for any individual galaxy it is difficult to evaluate Eq. 5.2,
e.g. due to the noise in Rγ , for a large ensemble of galaxies it is straight-
forward to estimate both σ2

e and 〈Rγ〉−2.
We therefore chose to estimate σ2

γ and thus assigned a piecewise-constant
wi = σ−2

γ for ensembles of galaxies binned by the quantities S/N and T/TPSF

used in the object selection § 5.4.2. We used these two quantities because
they are main proxies for measurement-related shape noise and variations
of response.

Fig. 5.4 shows the counts, 〈Rγ〉, and σ2
e of galaxies in 20× 20 logarith-

mically scaled bins of S/N = 10 . . . 300 and T/TPSF = 0.5 . . . 5. The upper
limit of each range is chosen such that more than 97.5% of the sample lies
below it. Remaining galaxies with large S/N or T/TPSF are subsumed into
the respective last bin.

While shear response is a mostly monotonous function of S/N and a
weak function of size, we found the scatter in measured ellipticity to have a
more complex behavior. Visual inspection of samples of galaxies with small
and large size ratio at high S/N, and with small and large S/N at large size
ratio indicated that this is a result of how galaxy morphology maps to this
space of observed properties: the large scatter in ellipticity of galaxies with
large S/N and size ratio results from the incidence of highly elliptical, nearly
edge-on disk galaxies.

7We compute it as σ2
e = 1

2

[∑
(ei,1)2

n2
gal

+
∑

(ei,2)2

n2
gal

]
.

108



5.4. THE METACAL-
IBRATION SHAPE
CATALOGUE

CHAPTER 5. DES Y3
SHAPE CATALOGUE

6 x 10 1 100 2 x 100 4 x 100

T/TPSF

101

102

S/
N

6 x 10 1 100 2 x 100 4 x 100

T/TPSF

101

102

S/
N

6 x 10 1 100 2 x 100 4 x 100

T/TPSF

101

102

S/
N

6 x 10 1 100 2 x 100 4 x 100

T/TPSF

101

102

S/
N

2.5

5.0

7.5

10.0

co
un

t [
10

5 ]

0.125

0.150

0.175

0.200

e2 1,
2

0.5

0.6

0.7

0.8

R

10

20

30

sh
ea

r 
w

ei
gh

t

Figure 5.4: Properties of the Y3 metacalibration catalogue as a function of galaxy S/N
and size ratio (defined as the ratio between galaxy size and PSF size). Top left: galaxy
number counts; top right: metacalibration response, as defined in § 5.4; bottom left:
root-mean-square of components of galaxy ellipticity; bottom right: shear weights, as
defined in § 5.4.3.
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Table 5.1: Number density values and noise per component using the different definitions
described in § 5.4.4. The last two columns, c1 and c2, indicate the per-component mean
shear measured in the catalogue.

Definition neff σe c1 c2

0.00036 0.00006
Chang+13 5.328 0.258

Heymans+12 5.592 0.265

The inverse-variance weighting significantly increases the statistical power
of the metacalibration catalog; without weighting of galaxies, the fiducial
sample (S/N> 10) triples the statistical power of DES Y1. Inverse-variance
weighting increases this further by ≈ 25%. The relative gain in statistical
power is only a weak function of the S/N cut-off chosen. However, we note
that for even lower S/N than the minimum of 10 usable here, the statistical
power of the unweighted catalogue has a maximum in the cut-off S/N due
to the noise introduced by faint galaxies.

5.4.4 Number Density

After applying the appropriate selections, the effective number density, neff ,
and shape variance, σe, are computed and reported in Table 5.1, using the
definitions from Chang et al. (2013) and Heymans et al. (2012). These
quantities, together, typically quantify the overall constraining power of a
shape catalogue as the variance of the estimated shear, σ2

γ = σ2
e/neff .

The definition for the effective number density is given by Chang et al.
(2013) in terms of the area of the survey, A, as:

nC13
eff =

1

A

∑ σ2
sh

σ2
sh + σ2

m,i

. (5.3)

The shape noise variance, σsh, is estimated from the high signal-to-noise ob-
jects, which have minimal measurement noise, accounting for the metacal-
ibration response. For metacalibration the measurement noise term
σm,i is estimated from the estimated measurement covariance matrix, ac-
counting for the response term.

Alternatively, the definition by Heymans et al. (2012) is given in terms
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Figure 5.5: Weighted effective number density, neff , and shape variance, σe, of sources in
the weak lensing selection across the survey footprint.
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of the shear weight, wi, for each galaxy as:

nH12
eff =

1

A

(
∑
wi)

2∑
w2
i

. (5.4)

The shape variance is given by,

σH12
eff =

1

2

[∑
(wiei,1)2∑
(wi,1)2

+

∑
(wiei,2)2∑

(wi)2

] [
(
∑
wi)

2∑
w2
i

]−1

. (5.5)

We use the H12 definition to compute the analytical covariances needed
for the cosmic shear cosmological analysis (Amon et al., 2020; Secco et al.,
2020). In Table 5.1 we further report the per component mean ellipticity
measured in the catalogue. In particular, the mean shear measured for the
first component is larger than the expected mean shear from cosmic variance
(∼ 0.5 10−5). The mean ellipticity needs to be subtracted before any science
application. More details about the potential origin of such mean shear are
provided in § 5.6.5.

Fig. 5.5 shows the spatial pattern of the weighted effective number den-
sity of the survey, as well as the shape variance.

5.4.5 Absolute calibration from image simulations

In the implementation adopted for the DES Y3 analysis, our shear mea-
surement pipeline needs to be further calibrated against image simulations
(MacCrann et al., 2020). The main reason is that the implementation of
metacalibration used in DES Y3 suffers from a shear-dependent detec-
tion bias of the order of 2-3 per cent, in case of blended galaxies. This
bias also depends on redshift, as blending often occurs between galaxies
along the same line-of-sight but located at different redshifts. We recall
that empirical tests can hardly measure multiplicative shear biases, due to
the lack of absolute calibration. The use of image simulations allows us to
further test other aspects of the pipeline, isolating individual effects generat-
ing shear calibration biases by running variations of the fiducial simulations
and quantifying their relative importance. At the moment of writing this
thesis the tests on the DES Y3 image simulations are not completed, despite
being already in an advanced stage; therefore, we can only report that the
preliminary DES Y3 shear calibration is expected to calibrate up to a 2-3
per cent multiplicative shear bias with an accuracy of the order of 0.5 per
cent.
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5.5 PSF Diagnostics

In this section we detail the systematic effects that are connected to the
DES Y3 PSF model and residuals. In particular, we discuss the tests we
performed on:

• the impact of the brigher-fatter effect (§ 5.5.1) in the stars used for
the PSF modeling;

• dependencies of the PSF model residuals on stars and galaxy
colours (§ 5.5.2);

• additive biases due to PSF misestimation (§ 5.5.3) using ρ statis-
tics (Rowe, 2010), both in sky coordinates and focal plane coordinates;

• tangential shear around stars (§ 5.5.4).

These tests aim at empirically detecting biases in the shape catalogue due
to PSF modeling errors. Additional tests of the DES Y3 PSF modeling that
are independent of the shape catalogue can be found in the DES Y3 PSF
model paper (Jarvis et al., 2020).

5.5.1 Brighter-fatter effect

The interaction of charges in CCDs with the already accumulated charge
distribution causes an increase of observed size with flux, also known as the
brighter/fatter effect (Antilogus et al., 2014; Guyonnet et al., 2015; Gruen
et al., 2015). In Fig. 5.6 we show size residuals (upper panel), fractional
size residuals (second panel), and e1 and e2 shape residuals (lower panel)
of the PIFF model for the reserved stars catalogue, relative to the actual
PSF measurements, as a function of their magnitude. The impact of the
brighter-fatter effect observed in DES Y1 was reduced by the exclusion of
the bright stars from the PSF modeling procedure, with the cut-off varying
between CCD exposures, but typically at magnitude ∼18.5. For DES Y3,
we implemented a correction of the effect (Gruen et al., 2015; Morganson
et al., 2018), which allowed for the utilisation of stars down to magnitude
∼16.5. The gain of stars two magnitudes brighter than those considered
in the Y1 analysis contributed to improving the PSF solutions for DES
Y3. For stars brighter than ∼16.5, an upturn in the size residuals can
still be seen, indicating that the correction implemented was not enough
to remove the brighter-fatter effect for the brightest objects. On the other
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Figure 5.6: The PSF residual size (top), fractional size (middle) and shape (bottom)
of stars as a function of their magnitude (relative to the band where the star has been
detected). The brighter-fatter effect can be noted as an increase in the PSF size residual
at bright magnitudes. To reduce the impact of the brighter-fatter effect, bright stars
are excluded from our PSF models; the cut-off varies between CCD exposures but the
shaded grey region shows a typical example. For the stars passing the cut, the fractional
size residuals are below 0.5 percent, at all magnitudes. For comparison purposes, we also
show as a vertical dashed line the cut-off implemented in DES Y1.

hand, for the stars passing the cut, the fractional size residuals are below 0.5
percent, and the trend with magnitude does not show the typical signature
of the brighter-fatter effect. Shape residuals show no significant trend with
magnitude within the same magnitude range.

5.5.2 PSF residual with colour

We investigate the dependence of the PSF residuals on the colour of the
stars, as compared to the colour of galaxies, in order to ensure that the PSF
is well matched to the galaxies. In general, different effects cause the PSF
to be wavelength-dependent (Plazas & Bernstein, 2012; Meyers & Burchat,
2015); no chromatic correction is included in the DES Y3 PSF model, so
if the typical colours of the stars used to model the PSF are different from
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those of the galaxy sample, this can induce a bias. We anticipate that the
DES Y6 PSF model will include a chromatic correction in the form of a
single colour parameter to be included during the PSF fit (see Jarvis et al.
2020 for more details), but this has not been included in the DES Y3 PSF
model as it was deemed not necessary.

Fig. 5.7 shows the PSF size, the fractional PSF size and shape residuals
as function of colour. A noticeable dependence on colour can be seen. It is
possible that part of the mean shear trend can be explained by differential
chromatic diffraction, while the PSF size trend is probably dominated by
Kolmogorov seeing (Jarvis et al., 2020), but further investigation is needed
to fully clarify the nature of these trends. In each panel, the median colour of
the DES Y3 galaxy sample is over-plotted, which corresponds to (r − z) =
0.75, as well as the 20th and 80th percentile colour of the sample. This
indicates that most of the sample is within dT/T < 0.002 and ∆e < 0.0001,
deemed acceptable as it would roughly correspond to an additive bias of
the same order of magnitude of the expected cosmic variance on 〈e〉 (∼ 0.5
10−4). Even if we do not directly correct for this, we stress that biases due
to unaccounted chromatic effects should ultimately be captured by the ρ
statistics test, described in the next section. Last, we note that in the
central panel of Fig. 5.7 a few points at r− z ∼ −0.3 seem to not follow the
main fractional PSF size - colour relation. This is probably caused by a few
AGN/quasars contaminating our PSF stars catalogue (see Fig. 6 of Jarvis
et al. 2020), as the size of these objects is larger than the one predicted by
our PSF model. We did not consider this contamination problematic, as
the number of objects with r − z < 0 in our PSF catalogue is less than 0.5
per cent.

5.5.3 Additive biases from PSF Modeling: ρ statistics

In this section, the propagation of additive systematic errors due to PSF-
misestimation to measurements of the ellipticity of galaxy images is quan-
tified. It is assumed that the observed shape of a galaxy inherits additional
contributions due to additive systematic errors and noise:

γest = γ + δesys
PSF + δenoise (5.6)

Specifically, δesys
PSF quantifies additive systematic biases from PSF modelling

errors. Other sources of additive systematic biases are explored in § 5.6.5.
Note that, in contrast to Eq. 5.1, Eq. 5.6 does not include any source of
multiplicative biases, which are instead discussed in MacCrann et al. (2020).
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Figure 5.7: The PSF size (left), fractional size (middle) and shape (right) of stars as a
function of their r−z colour. The PSF size and shapes are relative to the exposure/band
where the star has been detected. The colour for a given entry has been computed by
matching by RA/DEC the stars observed in different band/exposures.For our galaxy
sample, the median is (r − z) = 0.75 (vertical solid line). Most of the DES Y3 galaxy
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0.002 and ∆e < 0.0001.
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Figure 5.8: ρ statistics as measured for the catalogue of reserved stars. Only the ρ+

components are shown. DES Y3 values are compared to DES Y1 values, showing a
substantial improvement owing to a better PSF modeling. As an order of magnitude
comparison, we show as grey regions 10 per cent of the weakest expected cosmic shear ξ+
signal, which is from the lowest redshift tomographic bin. In order to effectively compare
the cosmic shear signal to each single ρ statistics, we divided it by α2, β2, 2βα, η2, 2βη,
2αη, depending on whether we compare to ρ0, ρ1, etc. We furthermore assumed the
following realistic values: α = 0.001,β = 1,η = 1. We recall this only serves as an order
of magnitude comparison, the impact of PSF residuals on the cosmic shear analysis has
been quantified in Amon et al. (2020) and deemed negligible.

116



5.5. PSF DIAGNOSTICS CHAPTER 5. DES Y3
SHAPE CATALOGUE

 [arcmin]

0.0

2.5

5.0

7.5

0+
1e 6

 [arcmin]

0

1

2

3

2+

1e 6

 [arcmin]
1.5

1.0

0.5

0.0

0.5

5+

1e 7

10 1 100 101 102

 [arcmin]

1.0

0.5

0.0

0.5

0

1e 5

10 1 100 101 102

 [arcmin]

0.5

0.0

0.5

1.0

2

1e 6

DES Y3 best fit

10 1 100 101 102

 [arcmin]

4

2

0

2

4

5

1e 8

 statistics

Figure 5.9: Measured τ+ and τ− together with the best fit models.

While we expect that 〈δenoise〉 = 0, detection of a signal for the PSF
residual, 〈δesys

PSF〉, would point to a problem. Following Paulin-Henriksson
et al. (2008), we describe PSF modelling errors as:

δesys
model = αemodel + β (e∗ − emodel) + η

(
e∗
T* − Tmodel

T∗

)
, (5.7)

where α, β, and η are the coefficients we must solve for, e∗ is the PSF
ellipticity measured directly from stars, Tmodel is the modeled PSF size and
T∗ is the PSF size measured from stars. The first term on the r.h.s is
proportional to the PSF model ellipticity (sometimes this term is referred
to as PSF leakage). Non-null α could arise from errors in the deconvolution
of the PSF model from the galaxy image. The second and third terms
describe the impact of PSF model ellipticity and size errors. As PSF model
errors produce an error in the shear estimate of similar order of magnitude
(Paulin-Henriksson et al., 2008), the coefficients β and η are expected to be
of the order of unity, although their exact value will depend on the detailed
properties of both PSF and galaxy profiles.

For simplicity of notation, we rename the terms in Eq. 5.7 as p ≡
emodel, q ≡ e∗ − emodel, and w ≡ e* (T∗ − Tmodel) /T*, and rewrite it as

δemodel
PSF = αp+ βq + ηw. (5.8)

To solve for the three unknown coefficients α, β, and η, we correlated all
the observed shears γest (Eq. 5.6) in the metacalibration catalogue with
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the quantities p, q, w measured for a catalogue of ‘reserved’ stars that have
not been used to constrain the model of the PSF8. Assuming that the true
shear signal γ does not correlate with PSF modeling errors, we obtain

〈γestp〉 = α 〈pp〉+ β 〈qp〉+ η 〈wp〉 , (5.9)

〈γestq〉 = α 〈pq〉+ β 〈qq〉+ η 〈wq〉 , (5.10)

〈γestw〉 = α 〈pw〉+ β 〈qw〉+ η 〈ww〉 . (5.11)

All quantities in the above equations are mean-subtracted. The resulting
correlations can be re-written in terms of the ρ-statistics (Rowe 2010; Jarvis
et al. 2016; ): ρ0 = 〈pp〉, ρ1 = 〈qq〉, ρ2 = 〈qp〉, ρ3 = 〈ww〉, ρ4 = 〈qw〉, and
ρ5 = 〈pw〉. To make notation even more compact we define: τ0 = 〈γestp〉,
τ2 = 〈γestq〉, and τ5 = 〈γestw〉:

τ0 = αρ0 + βρ2 + ηρ5, (5.12)

τ2 = αρ2 + βρ1 + ηρ4, (5.13)

τ5 = αρ5 + βρ4 + ηρ3. (5.14)

Fig. 5.8 shows the ρ-statistics measured from the catalogue of reserved
stars for DES Y3. For comparison purposes, we also show the DES Y1
ρ-statistics; due to better PSF modeling, the DES Y3 ρ-statistics have a
substantially smaller amplitude compared to Y1. In DES Y1, some of the
ρ-statistics were affected by large-scales constant contributions, which were
partially responsible for a non-negligible mean shear measured at the cat-
alogue level. For DES Y3, no evident large-scale constant contribution is
measured.

It is important to recall that the idea here is not to solve the system
of equations in each scale, but instead to find the best scalar parameters
α, β, and η, that match the τ and ρ measurements within our model. To
sample the posteriors of our parameters, we generated Monte Carlo Markov
chain (MCMC) samples that map out the posterior space, leading to param-
eter constraints. To this end, we used the public software package EMCEE

(Foreman-Mackey et al., 2013), which is an affine-invariant ensemble sampler
for MCMC. The τ measurement covariance was estimated using multiple
FLASK realisations (Xavier et al., 2016), but we also checked that estimat-
ing it from jackknife resampling did not change the results. We considered
the angular range between 0.1 and 250 arcmin for all measurements. This

8The reserved stars constitute 20% of all the stars selected as explained in § 5.3.2.
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range also includes scales smaller than the ones used in the main cosmolog-
ical analysis. We nonetheless checked that including only small scales (¡10
arcmin) or only large scales (¿10 arcmin) provided consistent best-fit values
for the α, β, and η parameters. Finally, we note that before measuring ρ
and τ from the catalogs, we assigned weights to stars to balance the ratio
of the number densities of stars and galaxies across the footprint at large
scales. In this test, we are using the PSF model and residual values of stars
under the assumption that stars spatially sample PSF effects the same way
galaxies do: therefore, large-scale differences in the number densities might
alter the interpretation of the results. Nonetheless, we found these weights
to have little impact on the best fitting values of α, β, and η.

The best fitting values for α, β, and η are reported in Table 5.2. The
best fitting model to the measured τ is shown in Fig. 5.9. The χ2 of the
best fitting values is χ2/n = 95/120. We note that the coherent offset of the
measured τ0+ with respect to the best fitting model is due to data points
at scales larger than 1 arcmin being highly correlated. We further checked
that the best fitting values were robust against dropping the τ− components
from the system of equations described by Eqs. 5.12, 5.13, 5.14, or against
dropping the PSF size residuals from the modelling (i.e., η = 0.). Last,
we checked that computing α, β, η values at every angular scale and then
fitting for a constant value across all the scales produced values compatible
with the ones reported in Table 5.2.

We defer the assessment of the impact of PSF modelling uncertainties
on our cosmological constraints to one of the DES Y3 cosmic shear papers
(Amon et al., 2020). We note though that we expect a smaller impact
compared to DES Y1. The α and β values have the same order of magnitude
of those measured in the DES Y1 analysis (Troxel et al., 2018), but the ρ
statistics now have a substantially smaller amplitude, as may be expected
from relatively minor updates to shape measurement, but more substantial
improvements to PSF modeling since then (Jarvis et al., 2020).

ρ statistics from focal plane-averaged quantities

The values of α, β, and η estimated in the previous section can also be
estimated from the correlation with reserved stars in focal plane coordinates.
To proceed with this test, we first computed the mean p, q, and w in
focal plane coordinates using the reserved stars catalogue; then, we assigned
the quantities p, q, and w to each galaxy based on the position in focal
plane coordinates. Values from differing exposures were averaged. Last, we
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Table 5.2: Values of the parameters α, β, and η as estimated from ρ statistics in sky
coordinates (left column) and from focal-plane averaged PSF ellipticity, PSF ellipticity
residuals and size residual (right column).

parameter sky parameter focal plane
α 0.002± 0.005 α1 −0.017± 0.016
- - α2 −0.046± 0.016
β 1.09± 0.08 β1 0.93± 0.2
- - β2 1.1± 0.2
η −0.7± 0.5 η1 −4± 6
- - η2 −5± 6

estimated α, β, and η coefficients performing a linear fit of the mean shear
with respect to the focal plane-averaged p, q, and w:

∂γest

∂p
= α + β

∂q

∂p
+ η

∂w

∂q
, (5.15)

∂γest

∂q
= α

∂p

∂q
+ β + η

∂w

∂q
, (5.16)

∂γest

∂w
= α

∂p

∂w
+ β

∂q

∂w
+ η. (5.17)

All the derivatives on the l.h.s of the above equations were also estimated
from the data using a linear fit. This method provided two different es-
timates of the parameters α,β, η, one for each components of the shear,
although our model for the PSF errors assumes there should be no dif-
ference between the two components. The values are shown in Table 5.2,
showing a good agreement between the two components. We also note that
the values of the α, β and η parameters estimated in such a way are generally
compatible with the parameters estimated in the previous section. Only the
parameter α2 shows a mild tension compared to the value estimated from
spatial coordinates, which is compatible with 0. This tension could be either
due to a statistical fluke or could be a hint that our uncertainty budget for
this method is slightly underestimated. We did not investigate this further,
as no statistically significant trend of mean shear with respect to PSF model
is measured in our catalogue (see next subsection).

Mean shear-PSF correlation

The DES Y1 catalogue () showed a linear dependence of the two components
of mean shear 〈ei〉 with the input PSF ellipticity at the galaxy position,
caused mostly by PSF model ellipticity residuals. As shown in Fig. 5.10,
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Figure 5.10: Upper panels: the mean shear 〈ei〉 as a function of input PSF model ellip-
ticity, for the two components. Solid lines are the linear best fit estimated using the PSF
interpolated in real-space coordinates, dashed red lines are obtained using the α, β and
η parameters estimated using focal-plane-averaged quantities Lower panels: the mean
shear 〈ei〉 as a function of input PSF size.

for the DES Y3 catalogue this dependence vanished: the measured slopes
for the two components are ∂γest1 /∂PSF1 = −0.001± 0.002, ∂γest2 /∂PSF2 =
−0.003± 0.002. The measured slope (black solid line) is compared to that
inferred from the ρ statistics obtained from focal-plane-averaged quantities
(red dashed lines).

The lower panels of Fig. 5.10 show the correlation between the mean
ellipticity and the PSF size. As for DES Y1 shape catalogue, no noticeable
trend is observed.

5.5.4 Tangential shear around stars

We discuss in this section the measurement of tangential shear around stars.
The purpose of this test is twofold. On one hand hand, the tangential shear
around bright stars can be revealing of problems related to saturation around
them; on the other hand, the tangential shear around faint stars is a proxy
of PSF modelling errors. We do expect a null signal in case saturation and
PSF modelling errors were negligible.

We show the measured signal in Fig. 5.11. For this test, we divided the
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Figure 5.11: Tangential shear around stars, which have been divided into a bright (m¡16.5,
left panel) and faint (m¡16.5, right panel) sample. The error bars are estimated form the
jackknife method.

stars catalogue in two parts: bright stars with magnitude m < 16.5, faint
stars with magnitude m > 16.5. We note that the faint stars sample is ba-
sically representative of the sample used for PSF modelling. Furthermore,
we assigned weights to stars such that their distribution was uniform across
the footprint. This step was needed as we noted that our star-finding al-
gorithm tends to select slightly less stars in crowded regions, as stars could
be contaminated or blended. This resulted in a distribution of stars slightly
anti-correlated with the matter distribution. If not corrected, this would
have generated a negative tangential signal, making harder to interpret the
outcome of this test.

After applying the weights, we found the measured signals to be com-
patible with a null signal (χ2/n = 17.2/20 and χ2/n = 10.1/20 for bright
and faint stars, respectively). As for the measurement involving faint stars,
we checked that this test had actually not enough statistical power to de-
tect a signal related to PSF modelling errors; based on the best-fit values
of the α, β and η parameters from Table 5.2, the expected signal due to
PSF modelling errors is roughly one order of magnitude smaller than the
statistical uncertainty of our measurement.

5.6 Shape catalogue tests

Empirical tests lack an absolute calibration, therefore are more suited to test
additive biases rather than multiplicative biases. They usually take the form
of a ‘null’ test. Deviations from a null signal might indicate the presence of
additive biases. The tests included in this section are the following:
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Figure 5.12: Mean shear in focal plane coordinates, for the two component of the shear.

• shear variations in focal plane coordinates (§ 5.6.1);

• tangential shear around field centres (§ 5.6.2);

• stellar contamination (§ 5.6.3);

• B-modes (§ 5.6.4);

• galaxy and survey properties (§ 5.6.5).

Note that unlike the other tests, the stellar contamination test is used to
estimate a potential multiplicative shear bias.

5.6.1 Mean shear in focal plane coordinates

Fig. 5.12 shows the two components of the shear binned in focal plane
coordinates. In particular, we computed the mean shear binned across all
exposures and show the mean shear obtained stacking together all the CCDs
in Fig. 5.13. It is possible for patterns to arise due to masking of bad columns
in some of the CCDs, CCD pixels defects etc. In both Figs. 5.12 and 5.13,
we observe no clear trends beyond variations due to shape noise and number
count variations. This visual test is not stringent: given the bin size used
to plot the two components of the shear, noise variations are much larger
in amplitude than the mean shear measured at the catalogue level (§ 5.4.4).
However, reducing the resolution of the plot did not show significant pattern.
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Figure 5.13: Mean shear in CCD coordinates, obtained stacking all the CCDs signal.
Upper panels: the signal is stacked in a grid of 125 x 250 bins. Lower panels: the signal
is further stacked in 10 bins along the x or y directions.

5.6.2 Tangential shear around field centre

We show in Fig. 5.14 the tangential shear binned by radius around field
centres (the set of points where the centre of the focal plane is pointing over
all exposures). A measurement of the tangential shear around a set of ran-
dom points has been subtracted to the measurement. The measurement has
been performed in sky coordinates; the field centres considered were 22331.
A spurious signal might indicate residual systematics related to the posi-
tion of the galaxies in the focal plane (due to, e.g., errors in the calibration
of the focal plane distortions). The measured χ2/n = 49.2/20 is too high
(p-value of 0.0003) to neglect this signal. We first verified that the mea-
surement could not have been explained by PSF modelling errors. We then
proceeded assessing the impact of such spurious signal on the cosmic shear
analysis. In particular, we interpolated the γt measurement and converted
it into a γ(r) signal for each exposure, where r is the distance from the
focal plane centre. We then assigned to each galaxy a new shape depending
on its position in focal plane coordinates. Values from differing exposures
were averaged. We last proceeded measuring the cosmic shear signal for the
whole catalogue using these new shapes in sky coordinates. The resulting
shear two-point measurement was 4 orders of magnitude smaller than the
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Figure 5.14: Tangential shear around field centres, as a function of angular distance.
Field centres in the riz bands have been considered.

expected weakest cosmic shear signal (the lowest redshift tomographic bin),
and therefore deemed negligible.

5.6.3 Stellar Contamination Test

The shape catalogue should contain only distant galaxies from which a cos-
mic shear signal may be measured. However, stars within our own galaxy
may be detected in the images and erroneously pass the galaxy selection.
Separating stars and galaxies at faint magnitudes is known to be a diffi-
cult problem. It must be ensured that any stars which are mis-classified as
galaxies and are included in the shape catalogue will not significantly dilute
the measured shear.

Where stars are point-like and the PSF is accurately known, it is ex-
pected that their measured mean shear and response should be zero 〈e〉 =
〈R〉 = 0. This will not be the case, however, if stars are included in the
sample preferentially when their size is overestimated due to noise. Also, a
mean non-zero response can result from even a small bias in the estimated
PSF (see Fig. 11 of Zuntz et al., 2018).

Shear bias from stellar contamination

We assume the ellipticity distribution of the metacalibration catalogue
P (e) is a weighted sum of galaxies and stars with ellipticity distributions
PG(e) and P∗(e) making up fractions fG and f∗ of the catalogue respectively:

P = fGPG + f∗P∗. (5.18)
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Assuming stars are not sheared, then the mean ellipticity of the metacal-
ibration catalogue is given by:

〈e〉 = fG〈RGγ〉. (5.19)

Measuring the mean response for the full catalogue 〈R〉 we can estimate the
biased mean shear of the catalogue:

〈γest〉 = fG〈R〉−1〈RGγ〉. (5.20)

The mean response of the metacalibration catalogue is given by:

〈R〉 = fG〈RG〉+ f∗〈R∗〉. (5.21)

We can approximate its reciprocal using a Taylor series given that there are
many more galaxies than stars:

〈R〉−1 ≈ 1

fG

(
1− f∗

fG
〈R∗〉〈RG〉−1

)
〈RG〉−1. (5.22)

Substituting Eq. 5.22 into Eq. 5.20 and using 〈γest〉 = 〈R〉−1〈Rγ〉 for the
mean shear gives:

〈γest〉 =

(
1− f∗

fG
〈R∗〉〈RG〉−1

)
〈γ〉, (5.23)

and as such we identify the multiplicative bias m as a result of stellar
contamination to be:

m = − f∗
fG
〈R∗〉〈RG〉−1. (5.24)

In order to assess the level of contamination of the shape catalogue by
stars f∗

fG
and the stellar response 〈R∗〉 we took advantage of the DES deep

fields (Hartley et al., 2020a) to construct a star-galaxy separation algorithm
which is expected to work at the faint magnitudes relevant for objects in the
shape catalogue (see Appendix B.2 for more details). Within the COSMOS
field we matched DES deep fields objects to the HST-ACS catalogue of
Leauthaud et al. (2007), which covers the full range of magnitudes for the
DES deep field data and also includes the mu class morphological star-
galaxy classification. Using the mu class as truth labels we trained a
k-nearest neighbors (kNN) classifier in the available ugrizJHK color space.
We then applied this classifier in the other DES deep fields, which have
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both Y3 metacalibration measurements and optical and near-infrared
colors available, but not HST-ACS mu class. The metacalibration
responses for objects in the DES C3, X3, and E2 deep field classified in
this way are shown in Fig. 5.15. The left panel shows responses for all
DES deep objects in the field and shows the desired behaviour for stars as
having shear response consistent with zero. The right panel shows shear
responses for objects which pass the fiducial shape catalogue cuts described
in Section 5.4.2 and shows the expected behaviour (the non-zero response
caused by cosmic shear we are trying to measure) for galaxies. Objects which
are classified as stars but also pass the fiducial metacalibration cuts and
make it into the shape catalogue are 0.5% of the shape catalogue, and have
a response which peaks away from zero. Errors are jackknife resampling
errors containing 66% of the distribution.

If we assume all of these objects are indeed contaminating stars and
use their mean shear response 〈R∗〉 then we may use Eq. 5.24 to find the
resultant shear bias. Fig. 5.16 shows this measured bias for the objects
across three deep fields regions, C3, X3, and E2. The median value for the
inferred stellar contamination bias of m = 0.004+0.001

−0.002. The potential for
miss-classification by the kNN classifier (i.e. some of the supposedly ‘con-
taminating’ objects are likely to be galaxies in truth) and the low statistics
means we regard this inferred bias from stellar contamination as an upper
limit estimate from the data. As shown in Appendix B.2, the classifier’s
performance decreases at fainter magnitudes from > 99% stellar purity at i
band magnitudes of ∼ 24 to 60% stellar purity at i band magnitudes of ∼ 25.
We verified that repeating this test using the star-galaxy separation available
from Data Release 1 of the Hyper Suprime-Cam Subaru Strategic Program
(HSC DR1 Aihara et al., 2018) using the iclassification extendedness
parameter provided consistent results.

We note that we also performed this test on the DES Y3 image sim-
ulations (MacCrann et al., 2020), which include a catalogue of stars from
the TRILEGAL (Pieres et al., 2019) model. In versions of the simulations
where objects (both stars and galaxies) are placed randomly, the stellar
contamination fraction of the shape catalogue, histogram of responses of
stellar objects in the shape catalogue, and histogram of resulting stellar
contamination shear bias were all reproduced to a high degree of accuracy.
In simulations where the sources (both stars and galaxies) were instead
placed on a grid, the stellar contamination of the shape catalogue reduced
by 2/3, and the non-zero response of stellar objects in the shape catalogue
disappeared, with the distribution peaking at zero. This indicates that the
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Figure 5.15: Metacalibration shear responses R11 for star and galaxy objects in the
C3, X3, and E2 fields as classified by the kNN classifier. The non-zero response of the
stars which make it into the metacalibration shape catalogue (right panel) is the origin
of the shear bias calculated in Eq. 5.24. The vertical dashed line represents zero on the
x-axis.

stellar contamination is an effect stemming from blending of star and galaxy
sources, and one which is already included in the shear bias modelled by the
image simulations. Due to the potential miss-classification issue and the low
statistics affecting the data estimate, we decided not to use the upper limit
estimated from data, but rather to resort to image simulations to model the
shear bias induced by stellar contamination.

5.6.4 E/B-modes decomposition and null tests with
systematics

In this section, we show the measured B-mode signals obtained using both
the pseudo-C` (Hikage et al., 2011) and Complete Orthogonal Sets of E/B-
Integrals (COSEBIs; Schneider et al., 2010) statistics. As the cosmic shear
field to first-order predicts no B-modes, any detection in the shape cata-
logue could indicate a contamination by systematic effects, in particular
by the PSF generating an additive bias. Note that a small B-mode power
spectrum can be sourced by higher-order physical effects, including intrin-
sic alignments, clustering of sources and higher order contribution to the
shear signal. If detectable at significant levels, these contributions should
be included when modelling the two-point correlation functions.
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Figure 5.16: Shear bias from contamination by objects classified as stars by the kNN clas-
sifier in the C3, X3, and E2 deep fields regions, calculated using Eq. 5.24. Distributions
over m are created by Monte Carlo sampling values of 〈R∗〉, 〈R∗〉, and f∗/fG from the
revelant distributions in Figure 5.15; and the vertical dashed lines represent the median
of each distribution.

Pseudo-C` B-modes

We built two Healpix maps (Górski et al., 2005) (with resolution nside = 1024)
of the cosmic shear signal by computing the weighted average of (response-
corrected) ellipticities of galaxies within each pixel. We estimated the E-
and B-mode power spectra of these maps with pseudo-C` using NaMaster

(Alonso et al., 2019), an open-source code that deconvolves the effects of
masked regions from the harmonic space coefficients. We used the inverse-
variance weight masks, given by the weighted count maps. We measured
spectra for multipoles in the range ` = [2−2048] in 32 bins evenly separated
on a square-root scale (spreading signal-to-noise more evenly than linear or
logarithmic binning).

The measured power spectra receive an additive bias from the shape-
noise power spectrum N`, which may diverge from the approximation N` =
σ2
e/neff due to mask effects and properties of the pseudo-C` estimator. More-

over, the mask induces a leakage between E- and B-modes (especially at
large scales) which increases the variance of affected multipole bins. There-
fore, we generated 2000 mock catalogs to both obtain an accurate mea-
surement of the noise power spectrum and the covariance matrix of the
pseudo-C` B-modes9.

9We also applied the standard technique consisting in simply applying random rota-
tions and obtained noise power spectra in agreement to better than 10−3. The covariance
matrix obtained with this method, however, failed at capturing the contribution due to
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Figure 5.17: Pseudo-C` B-mode power spectrum measured from the full DES Y3 shape
catalogue in the multipole range 8-2048. The noise power spectrum bias has been esti-
mated from gaussian simulations (see text) and subtracted. As an order of magnitude
comparison, we show as a grey shaded region 10 per cent of the expected E-mode power
spectrum of the weakest cosmic shear signal (the lowest redshift tomographic bin).

130



5.6. SHAPE CATALOGUE
TESTS

CHAPTER 5. DES Y3
SHAPE CATALOGUE

The procedure to generate the mock catalogs is as follows. Given a
fiducial E-mode power spectrum, we generated 2000 full-sky healpix maps
of the cosmic shear field. The cosmic shear field is assumed to be Gaus-
sian. For each galaxy in the catalog, we applied a random rotation to its
measured ellipticity. Each rotated ellipticity is used as intrinsic ellipticity.
We then sampled the shear field at the positions of galaxies and applied
the shear addition formula (see, e.g, Seitz & Schneider 1997) to the mock
intrinsic ellipticity. This method preserves both geometric properties of the
catalogue and the ellipticity distribution over the DES Y3 footprint. We
then applied the pseudo-C` estimator and obtained the noise power spec-
trum and an empirical covariance of the mock catalogue B-mode spectra.
Finally, we excluded the first multipole bin which includes scales larger than
the survey footprint and showed mild E-mode leakage reproduced by simu-
lations. Note, however, that compared to the DES Y1 analysis, we extended
the measurement to smaller scales, `max = 2048, corresponding to angular
scales of ∼ 5.3′. The measurement is shown in Fig. 5.17. Overall, we found
a χ2/n = 47.1/31 for multipole bins in the range ` = [8 − 2048], corre-
sponding to a p-value of 0.03, or a 1.8σ deviation from the null hypothesis
of no B-mode, suggesting that B-modes in the data are consistent with pure
shape-noise. Although we do not consider the p-value of 0.03 particularly
worrisome, we note that removing scales ` > 1500 (roughly corresponding
to scales smaller than θ ∼ 7 arcmin) improves the p-value to 0.06. We also
note that the fiducial scale cut for the main cosmological analysis removes
part of these scales, depending on the tomographic bin considered (Amon
et al., 2020).

COSEBIs

We used Complete Orthogonal Sets of E/B-Integrals (COSEBIs; Schneider
et al., 2010), which is an estimator designed to separate E- and B-modes and
has been measured for previous releases of DES as well as for KiDS (Asgari
et al., 2019a; Asgari & Heymans, 2019; Asgari et al., 2020). To calculate the
B-mode, we first computed the real space shear-shear correlations, ξ+ and ξ−
with TreeCorr (Jarvis, 2015) in 120000 linearly-spaced bins from θmin =
2.5′ to θmax = 250′ with a brute force calculation (bin slop=0). These were
converted to COSEBIs using filter functions that are described in Section 2
of Asgari et al. (2020) (see their Equation 7). We also calculated a noise-only
covariance matrix following Appendix A of Asgari et al. (2020) (see their

E-mode leakage, which is particularly relevant at large scales.
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Figure 5.18: COSEBIs B-modes from the DES Y3 shape catalogue are shown as data
points with errors given by a noise-only analytical covariance matrix. The dashed line
shows the pseudo-C` shown in Figure 5.17 converted to COSEBIs B-mode as described in
the text. Note that the COSEBIs are always discrete measurements for individual modes,
but the dashed line is connected for clarity. As an order of magnitude comparison, we
show as a grey shaded region 10 per cent of the expected COSEBIs E-mode of the weakest
cosmic shear signal (the lowest redshift tomographic bin).
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Equations A.5 and A.6). The resulting B-mode signal and corresponding
square root of the diagonal of the covariance are plotted in Fig. 5.18.

The χ2/n = 22.8/20 = 1.1 corresponds to a p-value of 0.86, which
indicates that the null hypothesis fits the data, and the DES Y3 shear cat-
alogue is consistent with zero B-modes. This result can be qualitatively
compared to the DES Y1 values (also consistent with zero for metacali-
bration shape measurements, with a p-value of 0.325) shown in the right
panel of Figure 1 from Asgari & Heymans (2019), although note that dif-
ferent θ-ranges were used. We also compared with the pseudo-C` shown in
Figure 5.17 by converting those measurements to COSEBIs. We did this
by approximating the pseudo-C` as a piece-wise constant function and in-
tegrating it with the Hankel transform of the COSEBIs filter functions (see
Equation 8 of Asgari et al., 2020). This converted measurement is displayed
as the dashed line in Figure 5.18, and we see that the two different B-mode
estimations agree well. Given the good agreement shown in Fig. 5.18, the
fact that we obtained different χ2 values for the two estimators is due to
the COSEBIs being less sensitive to small scales (Asgari et al., 2019a; As-
gari & Heymans, 2019; Asgari et al., 2020). We verified this by zeroing the
pseudo-C` measurement at ` > 1500 and then converting it to COSEBIs.
The converted measurement little differed from the one obtained with no
hard cut at ` ∼ 1500, demonstrating the insensitivity of COSEBIs to these
small scales.

5.6.5 Galaxy and survey properties tests

Our shear catalogue is characterized by a non-null mean shear in one of the
two components, whose origin is unknown. The values for the two com-
ponents are respectively 〈e1〉 = 3.6 10−4 and 〈e2〉 = 0.6 10−4; for the first
component, this value is larger than the one expected from cosmic variance
(∼ 0.5 10−4, as estimated from FLASK log-normal mocks). The mean shear is
measured and subtracted at the catalogue level as it would have an impact
on the measured cosmic shear signal. We further investigated the possi-
bility that the mean shear could vary across the footprint, and that these
variations could be non-cosmological but could be related to other galaxy
or observing properties. To this aim, we assumed 〈e1〉, 〈e2〉 to depend lin-
early on a number of different galaxy and observational properties: depth,
S/N, size ratio T/TPSF (i.e., the ratio between galaxy size and PSF size),
exposure time, brightness, and airmass. When applicable, these quantities
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were considered in the i band. We did not explicitly include PSF ellipticity,
ellipticity or size residuals as these had already been investigated in § 5.5.3.

We then performed a linear fit for the two shear components as a func-
tion of the different properties across the footprint. In principle, this is
a null test, as we do not expect a priori to detect any correlation. Any
significant deviation from a null signal, however, could help shed light on
the origin of the mean shear signal measured in the catalogue. We show
the measured coefficient for each of these systematic maps in Fig. 5.19; er-
rors were estimated using 300 FLASK log-normal mocks. We also checked
that using errors estimated with jackknife resamples caused no significant
difference in the results. We find a clear correlation between 〈e1〉 and the
ratio between the galaxy size and the PSF size, while none of the other
correlations are significant (removing the 〈e1〉−size ratio correlation from
the analysis reduces the χ2 for the null hypothesis to 20 for 13 d.o.f.).

We plot the mean shear as a function of size ratio in Fig. 5.20. As we
showed in Fig. 5.10 that the mean shear has no dependence on the PSF
size TPSF, this test mostly highlights a dependence of the mean shear with
respect to the galaxy size: this implies that smaller galaxies are associated
with a positive, spurious, mean shear signal. The origin of this signal is cur-
rently unknown, but we checked that the scale-dependent part of this addi-
tive bias is sufficiently small to not bias the cosmological analysis. This has
been achieved by the following procedure: first, we assigned to each galaxy
of the catalogue an additive bias equal to δei = biT/TPSF, where bi are
the measured per-component best fit to the linear dependence of the mean
shear with respect to size ratio. Then we computed the shear two-point
correlation function associated to these “fake” additive biases. The mea-
sured correlation function resulted to be three order of magnitude smaller
than the weakest expected cosmic shear signal; therefore, we considered the
scale-dependent part of this additive bias negligible.

We also show in Fig. 5.21 the measured mean shear as a function of
S/N, as S/N is a relevant quantity used to select the DES Y3 weak lensing
sample. No statistically significant trend is measured.

5.7 Summary

This Chapter presented the weak lensing shape catalogue from the DES
Y3 imaging data, covering ∼ 4143 deg2 of the southern hemisphere and
comprising ∼ 100 million objects, resulting in a weighted source number
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Figure 5.19: Best fit values for the coefficient of the relation 〈ei〉 = b syst + c with syst
a given systematic map. The values of the slopes are shown for different tomographic
bins, and the errors are estimated through log-normal mocks. We also tested using errors
estimated by jackknife resampling, with no sensible difference. The reported χ2 takes
into account correlations among different systematic maps.
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Figure 5.20: The mean shear 〈ei〉 as a function of size ratio T/TPSF, defined as the
ratio between galaxy size and PSF size. A statistically significant trend with T/TPSF is
measured for the first component of the mean shear, while for the second component we
measure no significant dependence.
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Figure 5.21: The mean shear 〈ei〉 as a function of S/N. No statistically significant trend
with S/N is measured, for both components.

density of neff = 5.59 gal/arcmin−2 and corresponding shape noise σe =
0.265. We described the shape measurement pipeline used for the DES Y3
analysis, metacalibration, which is based upon the pipeline used in the
DES Y1 analysis (Zuntz et al., 2018), but with the following improvements:

• improved PSF solutions (PIFF, Jarvis et al. 2020) were used for the
metacalibration deconvolutions rather than the PSFEx solutions
that were used for Y1;

• improved astrometric solutions, based on Bernstein et al. (2017);

• inverse variance weighting for the galaxies.

We further discussed the sample selection adopted for the DES Y3 analy-
sis and the changes compared to DES Y1, which improved the reliability
of the weak lensing sample. The metacalibration pipeline is capable of
self-calibrating biases in the shear estimation by correcting for the response
of the shear estimator and selection biases. The current metacalibration
implementation, however, does not correct for a shear-dependent detection
bias, which is calibrated using a dedicated suite of image simulations in
(MacCrann et al., 2020). It is expected that the DES Y6 release will im-
plement an updated version of metacalibration (Sheldon et al., 2019),
which accounts for the aforementioned effect. We note that we also expect
to implement in the future a second shear measurement pipeline, following
the BFD method outlined by Bernstein et al. (2016), although more inves-
tigation is needed to see to what extent the BFD algorithm can cope with
such shear-dependent detection bias.

In this Chapter we performed a variety of empirical null tests, mostly
aimed at identifying additive biases in our shape catalogue. We tested po-
tential systematic errors connected to PSF corrections, demonstrating that
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the improved PSF solutions reduced additive biases due to PSF misesti-
mation to negligible levels for the current analysis. PSF tests have been
performed both in real space and in focal plane coordinates, showing agree-
ment. We also tested that PSF chromatic effects (which are currently not
modelled) were negligible.

We further checked biases due to the erroneous inclusion of stars in the
DES Y3 catalogue, estimating an upper limit for the stellar contamination
bias, which we found to be in agreement with the results from image sim-
ulations. We looked at the signature of systematic effects by measuring
the catalogue B-mode signals using both the COSEBIs and pseudo-C` es-
timators, which consistently revealed in a null detection. We checked the
dependency of the two components of the shear with respect to a number
of galaxy or survey properties, finding no significant correlations, except for
a linear dependence between 〈e1〉 and the ratio between the galaxy size and
PSF size. We tested, however, that this trend has no relevant impact on
the DES Y3 cosmic shear analysis. Finally, we tested in Appendix B.1 the
validity of using the mean response to also calibrate shear two-point corre-
lation functions, finding that a two-point response correction is not needed
for the current DES Y3 analysis.

137



5.7. SUMMARY CHAPTER 5. DES Y3
SHAPE CATALOGUE

138



Part IV

Weak Lensing Mass Maps

In this part we present the official DES Y3 weak lensing mass maps, which
are the largest weak lensing mass maps up-to-date. We discuss a variety of
map-making methods, and compare their performance in simulations and

data. We furthermore outline a potential application of the maps where we
estimate cosmological parameters using the second and third moments of
the convergence field. The work on the DES Y3 mass maps is going to be

published in Jeffrey, Gatti et al. (DES collaboration) together with the
DES Y3 cosmological results. The work on the cosmology with mass map

moments is published in Gatti et al. (DES collaboration) 2019.
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Chapter 6

DES Y3 mass maps

6.1 Introduction

Weak (gravitational) lensing is one of the primary probes in recent galaxy
surveys (See e.g. Bartelmann & Schneider, 2001, for a detailed review of
weak lensing). By measuring the subtle distortions of galaxy shapes due to
the mass distribution between the observed galaxies and us the observers,
we are able to place tight constraints on the content of matter in the Uni-
verse (Ωm) as well as the level at which they cluster (σ8, defined to be the
standard deviation of the linear overdensity fluctuations on a 8h−1 Mpc
scale). So far, the main focus in weak lensing analyses has been on mea-
suring two-point summary statistics such as correlation functions or power
spectra (Troxel et al., 2018; Hildebrandt et al., 2017; Hikage et al., 2019;
Hamana et al., 2020). The two-point functions capture the Gaussian piece
of information in the underlying matter field. The methodologies for mea-
suring and modeling these two-point statistics are fairly mature – standard
analysis of two-point statistics in weak lensing now include several non-
trivial systematic effects that were not known a decade ago, for example,
intrinsic alignment (IA), clustering of source galaxies, small-scale modeling
of baryonic effects, and uncertainty in photometric redshift calibrations (a
detailed review of recent developments in these areas can be found in Man-
delbaum, 2017). As the analysis techniques for these two-point analyses
become mature, it is natural to ask whether we could extract more informa-
tion from the same data set simply by going to the next order of statistics,
and whether we understand, at the same level as the two-point statistics,
the non-trivial systematic effects in these higher-order statistics. Common
higher-order statistics with weak lensing include shear peak statistics (Di-
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etrich & Hartlap, 2010; Kratochvil et al., 2010; Liu et al., 2015; Kacprzak
et al., 2016; Martinet et al., 2018; Peel et al., 2018; Shan et al., 2018), higher
moments of the weak lensing convergence (Van Waerbeke et al., 2013; Petri
et al., 2015; Vicinanza et al., 2016; Chang et al., 2018; Vicinanza et al., 2018;
Peel et al., 2018; Gatti et al., 2019), three-point correlation functions or bis-
pectra (Takada & Jain, 2003, 2004; Semboloni et al., 2011; Fu et al., 2014),
Minkowski functionals (Kratochvil et al., 2012; Petri et al., 2015; Vicinanza
et al., 2019; Parroni et al., 2020), machine-learning methods (Fluri et al.,
2018, 2019; Jeffrey et al., 2020). Many of these have recently been applied to
data, performing well in terms of cosmological constraints (Liu et al., 2015;
Kacprzak et al., 2016; Martinet et al., 2018; Fluri et al., 2019). This Chap-
ter will focus on the key element for many of the methods described above:
a weak lensing convergence map, often referred to as a “mass map1” The
two crucial features that make a convergence map appealing for extracting
higher-order statistics are that 1) the map preserves the phase information
of the mass distribution and 2) the convergence is a scalar field, which can
be easier to manipulate/model than a shear field (which is closer to what
we observe, as explained in § 6.2). Over the years, many methods for gener-
ating these convergence maps have been proposed. The foundation of most
of these methods is the direct inversion algorithm developed in Kaiser &
Squires (1993a, hereafter KS), which is a purely analytic solution for con-
verting between shear (the observable) and convergence. A large number of
papers are based on the KS method, including cosmological analyses (Van
Waerbeke et al., 2013; Vikram et al., 2015; Chang et al., 2015, 2018; Oguri
et al., 2018). The main issues associated with the method is the treatment
of the noise and mask effects. To deal with these issues, more sophisticated
methods were developed, mostly imposing certain priors and implement-
ing a Bayesian framework around the KS method. These include applying
general Wiener filters and more specific sparsity priors. All methods show
success in some aspects of reconstructing the convergence maps. However,
it is not clear how to compare the results between these methods and how
to interpret the differences. Fundamentally, the issue lies in the fact that
there is a wide range of science these maps could potentially be used for –
with different applications different optimization choices can be made.

The goal of this Chapter is to present an objective and systematic com-
parison between several map reconstruction methods using the same set of

1The convergence quantifies the integrated total mass along the line of sight, weighted
by the lensing efficiency, which roughly peaks half-way between the source and the ob-
server.
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simulations and data. In particular, we will study this in the context of
the DES Y3 shear catalogue. Our results will make clear what is the ex-
pected differences in the maps constructed via the different algorithms and
highlight the advantages and disadvantages for using the maps in different
science cases. We present a comprehensive framework under which most
of the convergence map-making methods described previously can be con-
nected and compared. We particularly focus on four methods that span
the range of the most popular methods: KS, No B-mode prior, Wiener and
Glimpse (Leonard et al., 2014; Lanusse et al., 2016). The methods are
applied first to a set of DES Y3-like mock galaxy catalogs to demonstrate
the performance of each method when the true underlying convergence field
is known. Next, we apply the four methods to the DES Y3 data, where
we perform additional tests for observational systematic effects. We also
present a number of cross-correlation analyses to showcase the usage of the
maps. One or more DES papers will follow using the maps generated here
for cosmology analyses.

The structure of the Chapter is as follows: In §6.2 we provide high-
level theoretical background for weak lensing and the theory framework
that connects convergence with observable quantities in a galaxy survey. In
§6.3 we present a mathematical framework where the four different mass
mapping methods of interest (KS, No B-mode prior, Wiener, Glimpse) are
different only by the priors that they choose to adopt. The data product as
well as the simulations used in this work are described in §6.4. In §6.5 we
carry out a series of tests on mass maps generated from the four methods
and systematically compare them. We then apply the four methods to the
DES Y3 data in §6.6 and present tests for additional systematic residuals
from observational effects. We conclude in §6.7.

6.2 Weak gravitational lensing on the sphere

We begin with the gravitational potential Φ and the matter overdensity field
δ ≡ δρ/ρ̄; these real scalar fields on spacetime are related by the Poisson
equation

∇2
rΦ(x) =

3ΩmH
2
0

2a(t)
δ(x) . (6.1)

Here x = (t, r) (with t time and r a comoving spatial coordinate), Ωm

is the total matter density today, H0 is the Hubble constant today, and
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a ≡ 1/(1 + z) is the scale factor.

We will parametrize the observer’s past lightcone as (χ, θ, ϕ) with χ
the comoving radial distance from the observer and θ, ϕ a point on the
observer’s celestial sphere. The effect of weak lensing can be encapsulated
in the lensing potential, denoted φ, a real scalar field on the lightcone; its
value is related to the gravitational potential Φ projected along the line of
sight:

φ(χ, θ, ϕ) =
2

c2

∫ χ

0

dχ′
fK(χ− χ′)
fK(χ)fK(χ′)

Φ(χ′, θ, ϕ). (6.2)

This equation assumes the Born approximation (the path of integration is
not perturbed by the intervening mass). Here the angular distance factor
fK is sin, the identity, or sinh depending on whether the curvature K is
positive, zero, or negative.

The radial dependence of φ in 6.2 would allow a three-dimensional anal-
ysis; however, instead of this, we integrate away the radial dependence us-
ing as a weight function the normalised redshift distribution n(z) of source
galaxies, obtaining

φ(θ, ϕ) =

∫
dχ n(z(χ)) φ(χ, θ, ϕ), (6.3)

a real scalar field on the celestial sphere.

To handle φ as well as derived quantities we use the formalism of spin-
weight functions on the sphere as described in Castro et al. (2005). Let

sYlm(θ, ϕ) denote the spin-weight s spherical harmonic basis functions. Re-
call that the covariant derivative ð increments the spin-weight s while its
adjoint ð̄ decrements it; these operators act in a straightforward fashion on
the basis functions.

Now the convergence κ = κE + iκB (of spin-weight 0 i.e. a scalar) and
shear γ = γ1 + iγ2 (of spin-weight 2) are related to the lensing potential via:

κ =
1

4
(ðð̄ + ð̄ð)φ, (6.4)

γ =
1

2
ððφ. (6.5)

We now move to harmonic space, obtaining harmonic coefficients φ̂`m,
κ̂`m and γ̂`m for φ, κ and γ respectively. Here for example:
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γ =
∑
`m

γ̂`m 2Y`m (6.6)

with

γ̂`m =

∫
dΩ γ(θ, ϕ) 2Y

∗
`m(θ, ϕ). (6.7)

We can decompose the harmonic coefficients into real and imaginary parts:
κ̂`m = κ̂E,`m+ iκ̂B,`m and γ̂`m = γ̂E,`m+ iγ̂B,`m. In harmonic space equations
6.4 and 6.5 become:

κ̂`m = −1

2
`(`+ 1)φ̂`m (6.8)

and

γ̂lm =
1

2

√
(`− 1)`(`+ 1)(`+ 2)φ̂`m. (6.9)

Thus

γ̂lm = −

√
(`− 1)(`+ 2)

`(`+ 1)
κ̂`m. (6.10)

6.3 Mass map inference

The formalism in the previous section relates the ideal shear field defined
on the full celestial sphere γ to the convergence κ field for a given source
redshift distribution. Inferring the unknown convergence field from elliptic-
ity measurements of a finite set of source galaxies in the presence of survey
masks and galaxy “shape noise” is the challenge of mass mapping.

The real and imaginary parts of the shear γ represent a chosen two
dimensional coordinate system. In weak lensing, the observed ellipticity of
a galaxy εobs is related to the reduced shear g plus the intrinsic ellipticity of
the source galaxy εs through

εobs ≈ g + εs

where g =
γ

1− κ
.

(6.11)
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The reduced shear is approximately the true shear, g ≈ γ, in the weak
lensing limit. This allows a standard definition of observed shear, γobs = εobs,
where the measurements are degraded by “shape noise”, caused by the εs
values of the observed galaxies:

γobs ≈ γ + εs . (6.12)

The shape noise due to the intrinsic unlensed shapes of the source galaxies,
εs, is O(100) larger than the lensing signal per galaxy. It it therefore a
dominant source of noise.

In a Bayesian framework we consider the posterior distribution of the
convergence κ conditional on the observed shear γ and on model M:

P (κ|γ,M) =
P (γ|κ,M) P (κ|M)

P (γ|M)
, (6.13)

where P (γ|κ,M) is the likelihood (encoding our noise model), P (κ|M) is
the prior and P (γ|M) is the Bayesian evidence.

We formulate all reconstructed convergence κ maps as the most probable
map, given our observed data and assumptions, which is the maximum a
posteriori (MAP) estimate. From the posterior distribution P (κ|γ,M) the
MAP estimate is given by

κ̂ = arg max
κ

logP (γ|κ,M) + logP (κ|M) , (6.14)

whereM is prior information about the model. Here, the vector κ containts
the elements of a pixelised convergence map and elements of γ are the
pixelised observed shear field.

We can express the linear data model in matrix notation,

γ = Aκ+ n , (6.15)

where the matrix operation A corresponds to the linear transformation from
the ideal (noise-free and full-sky) shear field to convergence (equation 6.10).
The noise term n is the vector of noise contributions per pixel (equation 6.12)

We can begin by assuming that the average shape noise per angular pixel
on the celestial sphere is Gaussian, so that the likelihood (dropping M for
brevity) is given by

P (γ|κ) =
1√

(det2πN)
exp
[
− 1

2
(γ −Aκ)† N−1(γ −Aκ)

]
(6.16)
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where it is assumed that the noise covariance N = 〈nn†〉 is known and
the average noise per pixel is both Gaussian and uncorrelated (so that N
is diagonal). With this likelihood, the masked (unobserved) pixels have
infinite variance.

6.3.1 Prior probability distribution

This work considers four forms for the prior probability distribution P (κ|M),
the second term in equation 6.14. This prior probability is intrinsic to the
method and cannot be “ignored”. One may choose to assume a uniform
distribution2 for P (κ|M), but this is nevertheless an active choice, which
assigns equal prior probability to all possible convergence κ maps.

The various prior probability distributions used in this work correspond
to various mass mapping methods, with each prior arising from a different
physically-motivated constraint. They are:

1. Direct Kaiser-Squires inversion, which in the absence of smoothing
corresponds to a maximum a posteriori estimate with a uniform prior:

P (κ) ∝ 1 . (6.17)

Usually the Kaiser-Squires inversion is followed by a smoothing of
small angular scales, where it is expected that noise dominates over
signal. The corresponds to a lower bound on the prior with respect to
angular scale.

2. No B-modes prior – as discussed further in Sec. 6.3.3, this prior in-
cludes our knowledge that weak gravitation lensing produces negligible
B-mode contributions.

This corresponds to the following log-prior:

−log P (κ) = iIm(κ)=0 + constant , (6.18)

where the indicator function iIm(κ)=0 is discussed in Sec. 6.3.3.

2Perhaps bounded within some reasonable κ range, to allow the prior to be a true
(proper) probability distribution.
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3. Gaussian random field prior with an assumed E-mode power spec-
trum (i.e. Wiener filtering) and with zero B-mode power. The prior
distribution is

P (κ) =
1√

(det2πSκ)
exp
[
− 1

2
κ† S−1

κ κ
]
. (6.19)

with Sκ the signal covariance matrix, which will be discussed in Sec. 6.3.4.

4. Sparsity-enforced wavelet “halo” prior with no B-modes. In the late
Universe it is expected that quasi-spherical halo structures form. A
wavelet basis whose elements have this quasi-spherical structure in
direct (angular pixel) space should be a sparse representation of the
convergence κ signal. This is included in the log-prior distribution

−log P (κ) = λ||φ†κ||1 + iIm(κ)=0 , (6.20)

where the l1 norm of the wavelet transformed convergence φ†κ is small
when the convergence field contains quasi-spherical halo structures,
for a suitable choice of wavelet transform. The parameter λ is the
sparsity parameter and it is a tunable parameter of the prior. Unlike
the Gaussian prior where the lack of B-modes can be included in the
power spectrum, here the second term is added to enforce that the
signal is only E-mode. This is discussed in Sec. 6.3.5.

In the rest of this section we will explain the physical motivation for these
choices and show how they are implemented.

6.3.2 Kaiser-Squires on the sphere

In the flat sky limit, for relatively small sky coverage, the ð operators on
the sphere may be approximated as partial derivatives ∂ with respect to θ
and φ. In this regime the relationship between shear γ and convergence κ
(equations 6.4 and 6.5) is reduced to

γ̃(k) =
k2

1 − k2
2 + 2ik1k2

k2
1 + k2

2

κ̃(k) , (6.21)

where k1 and k2 are the components of k, defined in terms of the Fourier
transform
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κ̃(k) =

∫
R2

dθ κ(θ) exp
[
iθ · k

]
, (6.22)

where θ has components θ and ϕ. The well-known Kaiser-Squires (KS)
method estimates the convergence by directly inverting equation 6.21.

For the DES Y3 sky-coverage, the flat sky approximation cannot be used
without introducing substantial errors (Wallis et al., 2017). As in the Y1
mass map analysis (Chang et al., 2018) we require a curved-sky treatment.
KS on the sphere corresponds to a decomposition of a spin-2 field (γ) into
a curl-free E-mode component and a divergence-free B-mode component, as
described in Sec. 6.2.

With these components γE,`m and γB,`m we use equation 6.10 to recover
κE,`m and κB,`m, which are transformed as scalars using a spin-0 spherical
harmonic transform to recover κ(θ, ϕ) = κE(θ, ϕ) + i κB(θ, ϕ).

The spherical harmonic operations described above are entirely analo-
gous to CMB linear polarization, where the Q and U Stokes parameters
correspond to γ1 and γ2. As such, all spherical harmonic transformations
use either the scalar or “polarization” transforms of the HEALPY package. All
maps presented in this work use an NSIDE= 1024 and all relevant spherical
harmonic transforms use an `max = 2048.

As with flat-sky KS, this generalization of KS to the celestial sphere
corresponds to an inverse of the linear operation A in equation 6.15 and,
as such, corresponds to a maximum likelihood estimate (c.f. equation 6.16)
of the convergence field κ. Direct KS inversion therefore corresponds to a
maximum a posteriori estimate with a uniform prior P (κ) ∝ 1.

As is standard practice, the KS inversion is followed by a smoothing
of small angular scales, corresponding to a lower bound on the prior with
respect to angular scale. We treat the choice of the angular smoothing scale
as a free parameter, the effects of which we investigate using simulated data.

6.3.3 No B-modes prior

We can decompose a convergence map into a real E-mode and imaginary
B-mode component

κ = κE + i κB , (6.23)

where the shear representation of the E-mode κE is curl-free and the B-mode
κB is divergence-free.
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Through the Born-approximation weak lensing derivation of Sec. 6.2,
it is clear that weak gravitational lensing generates no B-mode component.
Higher order contributions can contribute to non-zero B-modes (e.g., Krause
& Hirata 2010), though these effects are generally much smaller than the
leading E-mode contribution. Additionally, intrinsic alignments of galaxies
can induce a non-zero B-mode contribution (Blazek et al., 2017; Samuroff
et al., 2019), though intrinsic alignment effects are not included in this
map reconstruction analysis. We also note that systematic effects, as shear
measurement systematics of PSF residuals, can also generate spurious B-
modes (e.g., Asgari et al. 2019b), but no significant B-modes have been
measured in the DES Y3 shape catalogue (Gatti et al. 2020, Chapter 5).

The standard Kaiser-Squires reconstruction generates spurious B-modes
due to shape noise and masks. It is therefore a well-motivated to have a
prior probability distribution for convergence κ that gives no probability to
κB and the Kaiser-Squires uniform prior to κE only, giving the following
log-prior,

−log P (κ) = iIm(κ)=0 + constant , (6.24)

where the indicator function of a set C is defined as

iC(x) =

{
0 if x ∈ C
+∞ otherwise ,

(6.25)

which in our case gives zero prior probability to convergence κ maps with
an imaginary component (corresponding to B-modes). The MAP estimate
with this prior and Gaussian likelihood is given by the following optimisation
problem:

κ̂ = arg min
κ

(γ −Aκ)† N−1(γ −Aκ) + iIm(κ)=0 . (6.26)

This formulation allows us to maximize the log posterior (equation 6.14)
using Forward-Backward Splitting. This is implemented with the following
iterative method

κ(n+1) = Re
[
κ(n) + µA†N−1

(
γ −Aκ(n)

)]
, (6.27)

where µ controls the gradient steps and is free to be chosen. In practice, we
take µ = 〈N〉.
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6.3.4 Gaussian prior (Wiener filter)

This prior on the convergence is that of a Gaussian random field, which is
applicable for the density field on large scales at late times,

P (κ|Sκ) =
1√

(det2πSκ)
exp
[
− 1

2
κ† S−1

κ κ
]
. (6.28)

The MAP estimate with this prior and Gaussian likelihood is given by
the following optimisation problem:

κ̂ = arg min
κ

(γ −Aκ)† N−1(γ −Aκ) + κ† S−1
κ κ . (6.29)

The solution for this is the Wiener filter:

κ̂W = Wγ

W = SκA
†[ASκA

† + N
]−1

.
(6.30)

Here Sκ and N are the signal and noise covariance matrices respectively,
which are 〈κκ†〉 and 〈nn†〉 for this problem.

Direct evaluation of the matrix W, which has at least 1012 elements and
is sparse in neither pixel space nor harmonic space, would be extremely com-
putationally expensive. We therefore make use of a class of methods that use
additional messenger fields (introduced by Elsner & Wandelt 2012) to iter-
atively transform between pixel space, where N is diagonal, and harmonic
space, where Sκ is diagonal.

For a Wiener filter messenger field implementation on the sphere we
use the software DANTE (DuAl messeNger filTEr), presented in Ramanah
et al. (2019). The signal covariance matrix in harmonic space is diagonal,
with elements given by an assumed fiducial power spectrum. Our fiducial
E-mode power spectrum matches that of the simulate (noise-free) Buzzard
convergence κ maps. We explicitly provide a B-mode power spectrum set
to zero, thus simultaneously achieving the no B-modes prior equivalent to
Sec. 6.3.3.

6.3.5 Sparsity prior

The optimisation problem solved by the Glimpse algorithm using a sparsity
prior is
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κ̂ = arg min
κ

(γ −Aκ)† N−1(γ −Aκ) + λ||ωΦ†κ||1 + iIm(κ)=0 , (6.31)

where ω is a diagonal matrix of weights and the parameter λ is the spar-
sity parameter and it is a tunable parameter of the prior. The indicator
function iIm(·)=0 in the final term imposes realness on the reconstruction (no
B-modes). Last, Φ† is the inverse wavelet transform. The wavelet transform
used in the Glimpse algorithm is the starlet (Starck et al., 2007), which can
represent positive, isotropic objects. This prior in the starlet basis repre-
sents a physical model that the matter field is a superposition of spherically
symmetric dark matter halos.

The use of NDFT (non-uniform discrete Fourier transform) allows the
first term to perform a forward-fitted Kaiser-Squires-like step without bin-
ning the shear data, allowing the smaller scales to be retained in the recon-
struction. The full algorithm, including the calculation of the weights, is
described in Sec. 3.2 in Lanusse et al. (2016).

The implementation of Glimpse operates on a small patch of the sky,
which it treats as flat. Input shape data is transferred from the celestial
sphere to the tangent plane (i.e. the plane tangent to the sphere at the patch
centre); the ‘shape to convergence’ calculation is done on the tangent plane
(where the flatness simplifies the analysis); the results (which are reported at
a lattice of points - call this an ‘output lattice’) are then mapped back to the
sphere. The mapping between sphere and tangent plane is the orthographic
projection. To analyse the large DES footprint we run Glimpse on multiple
(overlapping) small patches and paste the results together. We set each of
our patches to be 256 square degrees (a compromise: larger would stress
the flat-sky approximation while smaller would suppress large-scale modes).
The density of such patches is one per 13 square degrees. The output lattices
were set to have 330× 330 points. Each pixel in our final convergence map
(NSIDE of 2048) is obtained from a weighted average of the convergences at
all the output lattice points, from all the patches, that happen to fall in
that pixel. The weights are chosen to be unity in the centre of each patch
but to fall away to zero (sharply but smoothly) away from the central one-
ninth of each output patch. As a last step the output convergence map is
downsampled to an NSIDE of 1024.
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6.4 Data and simulations

In this work we use data products from the third year (Y3) of the Dark
Energy Survey (DES Flaugher, 2005), and mock galaxy catalogs reproducing
the properties of the DES data. In particular, we used the version 1.8 of
the Buzzard simulation introduced in § 4.3.2. The preliminary (not yet
published) results on data have been obtained using the blinded version
3.30.20 of the DES Y3 catalogue, as presented in Chapter 5. Below we give
a description of the redMaPPer clusters used in the results section of this
Chpater.

6.4.1 redMaPPer Clusters

In this work we also consider the DES Y3 redMapper cluster catalogue
(based on the homonym algorithm Rykoff et al. 2015) to compute corre-
lations with the reconstructed convergence maps. The algorithm optically
selects clusters and estimates cluster’s richness λRM. The richness is a proxy
of the number of galaxies belonging to the cluster; it is formally defined as
the membership probability over all galaxies within a scale radius. The
radius is chosen such that it minimises the scatter in the mass-richness re-
lation. The redMaPPer catalogue comes with excellent redshift accuracy
(σz/(1 + z) ∼ 0.01), as the cluster members are mostly well modelled red
galaxies.

6.5 Simulation tests

In this section we discuss and compare the different mass map methods
outlined in § 6.3. To this aim, we use simulated convergence maps and a
number of different statistics to test the quality of the reconstruction with
respect to the input convergence map available in simulations. All the maps
considered had been converted to HEALPIX (Górski et al., 2005) maps with
NSIDE 1024, for an easier comparison. The pixel size corresponding to such
resolution is of 3.2 arcminutes and it has been chosen based on the expected
DES Y3 galaxy number density.

Figs. 6.1, 6.2 show a number of simulated maps. For visualisation pur-
poses, the KS, the No-B-modes prior and the original convergence maps
have been smoothed at 10 arcminutes. For the Glimpse map we imposed a
sparsity prior of λ = 3. No smoothing has been applied to the Wiener map.
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Figure 6.3: Zoomed in version of the residual maps for the KS (left) and No B-mode
prior methods (right). The maps have been zoomed close to the edge of the footprint.
The No B-mode prior method is characterised by a lower amplitude of the residual map,
owing to a better handling of the mask effects.

In particular, Fig. 6.1 shows the input convergence map, the KS E-mode
and KS B-mode maps3 and the KS residual map (defined as the difference
between the true map and the recovered E-mode map), obtained from a
noiseless realisation of the shear field. In this idealised case with no shape
noise, the KS method is able to recover most of the features of the input
convergence map, except for the part of the map close to the edges of the
footprint. The KS method is susceptible to mask effects in the case of partial
sky coverage, resulting in a non-zero residual map and spurious B-modes due
to E-modes leakage.

Fig. 6.2 shows the E-mode maps for the four methods obtained from a
noisy realisation of the shear field. The KS E-mode map is now noisier:
despite the most significant features of the input convergence field can still
be spotted by eye, a number of noise-induced small-scale peaks dominate
the reconstructed map. The impact of noise is reduced in the case of the
other methods, due to the additional priors included in the map making
process. In particular, the sparsity prior adopted by the Glimpse method
suppresses the noise enhancing peaky features, which are assumed to be
the result of a superposition of spherically symmetric dark matter halos (a
feature that can be noted in the zoomed-in portion of the Glimpse map).
The noise is also suppressed in the case of the Wiener method, although
the map shows less peaky features compared to the Glimpse map. The

3Note that, KS method excluded, all the methods set the B-mode maps to 0.
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Figure 6.4: Pearson coefficient between the reconstructed map and the true, noiseless
convergence map, for the four different mass map methods. When possible, we varied
the tuning parameters of the methods. Errors are estimated from jackknife resampling.

Wiener method assumes the convergence field to be Gaussian, therefore is
better suited to recover the large scale signal of the map. In the case of
the No-B-modes prior, the map looks similar to the KS E mode map, but
with structures enhanced due to noise suppression (the noise suppression, in
this case, is a consequence of the iterative procedure described in Eq. 6.27,
which downweights noisy pixels).

In the following subsections, we proceed to a more quantitative com-
parison between the different map-making methods, discussing a number of
tests we performed on maps. Whenever possible, we varied the parameters
of the method (i.e., smoothing scale θ of the smoothing function for KS and
No-B-mode prior methods, sparsity parameter λ in Glimpse). In particu-
lar, we discuss in § 6.5.1 a test involving the Pearson coefficient between the
true, simulated convergence map and the reconstructed maps; in § 6.5.2 we
show the root-mean-square error of the residual maps; we discuss the power
spectrum recovered by different methods in § 6.5.3; we show the 1-point
distribution function of the reconstructed map in § 6.5.4.

6.5.1 Pearson coefficient

The first statistic we examined is the Pearson coefficient. The Pearson
correlation coefficient, defined for two convergence fields κ1 and κ2, is:

Pearson =
〈κ1κ2〉√
〈κ2

1〉
√
〈κ2

2〉
(6.32)
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In this case, we computed the Pearson coefficient between the true, noise-
less, simulated convergence map and the reconstructed map. In this test,
we only considered E-mode maps and maps recovered from noisy estimates
of the shear field. The results are show in Fig. 6.4. In general, the closer
to unity the Pearson coefficient value, the better the reconstruction. Values
are generally far from unity because of shape noise (we recall we are com-
paring the recovered maps to a true noiseless convergence map). For KS
and the No-B-modes prior methods we varied the smoothing scale, while
for Glimpse we varied the sparsity prior. The No-B-modes prior method,
Glimpse and Wiener perform better (i.e, the Pearson coefficient is closer
to unity) than standard KS for some value of their tuning parameters. The
effect of the tuning parameter for the No-B-modes prior method is similar
to KS: basically, smoothing helps improving the Pearson coefficient. This
is due to the fact that small scales are shape noise dominated, with 10 ar-
cminutes corresponding to the scale where the amplitude of shape noise is
comparable to the amplitude of the signal. This means that smoothing up
to 10 arcminutes removes more small-scale noise-induced peaks than “true”
peaks. A different amount of shape noise would change this scale; in the
limit of no shape noise, the optimal scale would be the smallest scale allowed
by the pixellisation scheme. As for Glimpse, the level of suppression of the
shape noise is controlled by the sparsity coefficient λ, for which we found
λ = 3 to be the optimal parameter. The Wiener filter map does not have
any tuning parameter, but has the highest Pearson coefficient among all the
methods. We note that in the case of Glimpse and Wiener maps, further
smoothing the maps would not improve the Pearson coefficient, as the noise
is suppressed by the sparsity and Gaussian priors to a level such that the
amplitude of the shape noise is smaller than the amplitude of the signal.

6.5.2 RMSE

The second statistic we examine is the root-mean-square error (RMSE) of
the residuals, defined as:

RMSE(κtruth, κrecon) ≡

√√√√ 1

n

n∑
i=1

∆κ2
i , (6.33)

with ∆κi being the difference between the reconstructed map and the true
map in a given pixel i. In this test, we only consider E-mode maps and
maps recovered from noisy estimates of the shear field. The results are
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Figure 6.5: Root-mean-square error (RMSE, see § 6.5.2 for a definition) for the four
different mass map methods. When possible, we varied the tuning parameters of the
methods. Errors are estimated from jackknife resampling.

shown in Fig.6.5. In general, the closer to zero the RMSE, the better the
reconstruction. The results from this test are in line with the results from
the Pearson coefficient test: the No-B-modes prior method, Glimpse and
Wiener perform better (i.e, the RMSE is closer to zero) than standard KS
for some value of their tuning parameters, which are similar to the ones
determined from the Pearson coefficient test.

For KS and the No-B-modes prior methods the RMSE is reduced strongly
with smoothing, indicating that the variance at small scales is completely
dominated by shape noise, reaching a minimum after smoothing the recon-
structed maps at ∼10-20 arcminutes. We note that the minimum of the
RMSE signal and the maximum of the Pearson coefficient for these two
maps are at a similar smoothing scale (even though the value does not need
to be exactly the same). For these two methods, the RMSE should con-
verge at very large scales (larger than those showed here) to the RMSE of
the original field, as the reconstructed map signal would be washed out by
the smoothing.

As concerns the Glimpse method, it is characterised by a smaller RMSE
compared to KS. This indicates how the sparsity prior successfully deal with
shape noise, reducing it. The minimum is reached for a sparsity parameter
λ = 3, the same value that maximise the Pearson coefficient. The Wiener
map does not have any tuning parameter to vary, but shows a smaller RMSE
compared to the KS method. As in the case of the Pearson coefficient,
further smoothing the maps obtained from Glimpse or the Wiener method
would not improve the RMSE.
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Figure 6.6: Power spectrum of the reconstructed maps obtained from a noisy realisation
of the shear field with respect to the expected theory power spectra of the simulation. For
the KS and the No B-modes prior methods, we considered the maps with 10 arcminutes
smoothing; for the Glimpse method, we considered the map obtained with sparsity
parameter λ = 3.

6.5.3 Power Spectrum of the signal
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Figure 6.7: Power spectrum of the recon-
structed maps, for the KS and the No B-
modes methods, obtained with 10 arcmin-
utes smoothing. We compare here with a
theory power spectra which includes the ef-
fect of the smoothing due to the prior.

We now study the power spectrum
of the reconstructed maps. Results
are shown in Fig. 6.6. The power
spectrum are obtained from a noisy
estimate of the shear field; noise-
only power spectrum have been sub-
tracted from the measurements. Af-
ter the subtraction, we compared
the power spectrum of the recon-
structed maps to the expected the-
ory power spectra of the simulation.
The power spectrum are binned in
10 bins between ` = 0 and ` = 2048.
For the KS and the No B-modes
prior methods, we considered the
maps with 10 arcminutes smooth-
ing; for the Glimpse method, we
considered the map obtained with sparsity parameter λ = 3.

Fig. 6.6 clearly shows the signal suppression at small scales and high
multipoles due to the different priors implemented by the different methods.
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Figure 6.8: PDF (1-point distributions) for the different map reconstruction methods,
obtained from a simulated, noisy realisation of the shear field. The grey shaded histogram
in each panel represents the PDF of the true, input convergence field. For the KS and the
No B-modes prior methods, we considered the maps with 10 arcminutes smoothing; for
the Glimpse method, we considered the map obtained with sparsity parameter λ = 3.

The KS and the No B-modes prior methods show similar behaviour, due
to the fact they both implement the same smoothing. In general, all the
methods fall short reproducing the correct amplitude of the input theory
power spectra (except for the No B-modes prior method at very large scales).
This is expected: the use of priors is not meant to preserve the correct
amplitude of the moments of the input field.

If we were able to analytically model the effect of the priors, we would
get a better comparison with the input power spectra. For instance, this
can be done for the KS and the No B-modes prior methods, since the prior
(i.e., the smoothing) can be easily modelled as a Gaussian filter in harmonic
space and multiplied to the theory power spectra. The comparison for these
two methods with the theory predictions including the effect of smoothing is
shown in Fig. 6.7. The two methods now show a much better agreement with
the theory predictions, although the KS method underestimates the power
at large scales, due to the lack of priors that account for mask effects. All
the missing power is leaked into B-modes. The No B-modes prior method,
on the other hand, better recovers the large scale part of the power spectra,
as it is able to handle mask effects efficiently. A similar comparison cannot
be done for the Glimpse and Wiener methods, as analytical expressions
modelling the effect of their priors on the power spectra are not available.
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6.5.4 Convergence PDF

We next show in Fig. 6.8 the 1-point distribution function (PDF) of the con-
vergence field. For the KS and the No B-modes prior methods, we consid-
ered the maps with 10 arcminutes smoothing. The PDF of the reconstructed
maps, while showing an asymmetric distribution, fall short in reproducing
the correct input PDF, due to the effect of smoothing and the presence
of noise. The asymmetric distribution is a sign that the recovered map is
not dominated by noise, whose PDF is completely Gaussian. The PDF of
the Wiener and the Glimpse maps also falls short in reproducing the true
PDF - despite noise has a smaller impact. Note that only the PDF for the
Glimpse map obtained with sparsity parameter λ = 3 are shown.

6.5.5 Summary of the tests on simulations

The tests we performed in this section clearly suggest that using priors to
recover the converge field from a noisy realisation of the shear field im-
proves the reconstruction according to a number of metrics. All methods,
for some value of their tuning parameters, performed better than the raw,
non-smoothed KS method in terms of the Pearson coefficient with the true
convergence map. This means that the priors effectively make the maps
more similar to the “true” convergence field. In particular, the Wiener
and Glimpse methods generally delivered larger values of the Pearson co-
efficient and smaller values of the RMSE among the four methods. We
furthermore showed that assuming B-modes to be null reduces mask effects
(we remind the reader that this prior is assumed by all methods except for
the KS method). As a downside, we also showed how the choice of the
prior can make the comparison of certain statistics with theoretical predic-
tions particularly hard. E.g., the priors we assumed in this work severely
dampen the amplitude of the measured power spectrum, especially at high
multipoles. While in the case of the KS and the No B-modes prior methods
the effect of the priors can be modelled analytically, this is not possible for
the Wiener and Glimpse methods, making a direct comparison with the
standard theoretical predictions meaningless.

The choice of the method clearly depends on the goals and details of
the science application. For instance, cosmological analyses using Wiener
and Glimpse map methods necessarily need to forward model the desired
statistics and data vectors with N-body simulations, due to the difficulties
in theoretically modelling the effects of their priors. If a comparison with
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analytical predictions is more desirable, the KS or No B-mode methods
can be used. Among the two, the No B-mode method recovers the correct
amplitude of the power spectra of the convergence field at every scales,
without the need of further modelling mask effects.

In the next section we present the four different maps obtained using the
DES Y3 data, along with a number of systematic tests.

6.6 Application to data

We present in this section the DES Y3 weak lensing mass maps on data.
Fig. 6.9 shows the four maps obtained with the KS, No B-mode prior, Wiener
and Glimpse methods, obtained from the METACALIBRATION catalogue. For
the KS and the No B-modes prior methods, we considered the maps with
10 arcminutes smoothing; for the Glimpse method, we considered the map
obtained with sparsity parameter λ = 3. We recall that these maps have
been obtained applying the METACALIBRATION response correction and the
inverse variance weights, as explained in § 5.4.3. The maps obtained with
the different methods visually show the same differences as the ones obtained
in simulations (Fig. 6.2), with the Weiner and Glimpse maps particularly
suppressing the noise thanks to their prior.

We then perform a number of tests on the recovered maps. We first
test if there exists any spurious correlation between our maps and quan-
tities that are not expected to correlate with the convergence maps. The
shape catalogue used to produce the mass maps have been largely tested
in Chapter 5, but the potential correlation between convergence maps and
systematics has not been investigated there. We therefore consider a num-
ber of catalogue and observational properties as potential systematics, in
a similar fashion to what has been done in Chapter 5. In particular, we
consider the two components of the PSF ellipticity at the galaxy position
(PSF1, PSF2), their E and B-modes maps (PSFE, PSFB); and the size of
the PSF (TPSF). As observing condition properties, we consider the mean
i-band airmass, the mean i-band brightness, the mean i-band magnitude
limit (depth), the mean i-band exposure time, and the mean i-band seeing.
There are a few maps that we considered in the shape catalogue tests and
that we exclude here. For instance, we do not include the signal-to-noise
ratio maps among the systematic maps, as we actually expect to measure
a signal: indeed, over-dense regions of the sky should be populated by red
ellipticals with high signal-to-noise. Similarly, we expect (and measure) a
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Figure 6.10: Left panel: Best fit values for the coefficient of the relation 〈κ〉 = bMS + c
with syst a given systematic map. The values of the slopes are shown for different
systematic maps and the errors are estimated using log-normal FLASK simulations. Right
panel: Pearson coefficient of the convergence maps and a number of systematic maps.
Errors are estimated using log-normal FLASK simulations. We also show the Pearson
coefficient with the redMaPPer clusters effective richness λeff,RM.

high significance correlation between galaxy colors and our mass maps.
We follow Chang et al. (2018) and create a systematic mapMS for each of

the systematics using the mean-subtracted values. We first assume a linear
dependence between the convergence maps and the systematics maps, such
as:

κE = bMS (6.34)

We fit all the pixel values of the convergence maps assuming such a linear
relationship with the systematic maps. We show the measured coefficient
for each of these systematic maps in the left panel of Fig. 6.10. Errors are
estimated using 300 FLASK log-normal mocks, but we verified that using
jackknife errors caused no difference in the results. We do not find any par-
ticularly significant correlation; individually, the coefficients are measured
with a significance smaller than 3σ. The overall χ2 of the null hypothesis
(considering the correlations among the 10 systematic maps considered here)
is 5,20,23,15 for KS, No B-mode prior, Wiener and Glimpse respectively.
We also compute the Pearson coefficient between the convergence maps and
the systematic maps; results are shown in the right panel of Fig. 6.10. The
main difference with the linear fit is that the Pearson coefficient does not
assume a priori any relation between the convergence maps and systematic
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maps. Again, we do not find any strong evidence of systematic contamina-
tion, with the χ2 of the null hypothesis being 14,16,20 and 23 for KS, No
B-mode prior, Wiener and Glimpse respectively.

For obvious reasons the true convergence map is not available in data;
we can nonetheless check that the reconstructed mass maps probe the fore-
ground matter density field by correlating them with a sample of other
tracers. We therefore proceed computing the Pearson coefficient of the re-
constructed maps with redMaPPer cluster richness. Groups and clusters of
galaxies are expected to trace the highest density regions in the foreground;
as a consequence, we do expect to detect a high correlation with the mass
maps. We only consider here the biggest clusters in the redMaPPer cata-
logue with richness λRM > 20, as smaller clusters are generally associated
with larger detection uncertainties. Furthermore, we only consider clusters
at redshift z < 0.7.

In order to take into account the fact that our mass maps are proxies of
the mass distribution effectively weighted by a lensing kernel, we compute
the Pearson coefficient with an effective cluster richness. Following Jeffrey
et al. (2018), we define the effective cluster richness as:

λeff,RM =
p(z)χ(z)

a(z)
× λRM, (6.35)

where p(z) is the lensing efficiency at the location of the cluster, χ(z) is the
comoving distance to the cluster and a(z) the scale factor.

We measure at high significance the Pearson coefficient between the maps
and the redMaPPer effective cluster richness, obtaining values of 0.34±0.02,
0.33± 0.02, 0.36± 0.02, 0.37± 0.02 for KS, No B-mode prior, Wiener and
Glimpse respectively. The amplitude of the signal is definitely larger than
any of the signals measured between the convergence and the systematic
maps. The Wiener and Glimpse maps have slightly higher Pearson coef-
ficients with respect to the KS and No B-mode prior maps, although with
the given uncertainties the difference is not particularly significant. For vi-
sualisation purposes, we show in Fig. 6.11 the Glimpse map with a few
redMaPPer clusters super-imposed. From the figure it can be noted how
clusters tend to populate most overdense regions of the convegence map,
avoiding the regions with negative signal.
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Figure 6.11: METACALIBRATION DES Y3 weak lensing mass maps, obtained with the
GLIMPSE method, with redMaPPer clusters (green circles) super-imposed. In the wide
field, we randomly selected a sub-sample of the clusters with richness λRM > 70; for the
small inset, we randomly selected a few clusters with 20 < λRM < 30. The circles are
centered in the cluster center, but the circle size is not representative of the cluster size
and it has been fixed to 100 arcminutes for visualisation purposes.
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6.7 Summary

In this Chapter we constructed weak lensing convergence maps (“mass
maps”) from the DES Y3 dataset using four reconstruction methods. The
first method considered is the direct inversion of the shear field, also known
as the Kaiser-Squires method, followed by a smoothing of small angular
scales. The second method adds a prior on the B-modes of the map, impos-
ing the reconstructed convergence field to be purely an E-mode map (No
B-mode prior). Also this method has been followed by a smoothing at small
scales. The third method, the Wiener filter method, assumes a Gaussian
prior on the recovered mass map. Last, the Glimpse method implements
a sparsity prior which can be interpreted as a physical model where the
matter field is considered as a superposition of spherically symmetric dark
matter halos.

All methods are implemented on the sphere to accommodate the large
sky coverage of the DES Y3 footprint. We compared the different methods
using simulations that are closely matched to the DES Y3 data. We quan-
tified the performance of the methods at the map level using a number of
different summary statistics: the Pearson coefficient with the “true” simu-
lated convergence map, the root-mean-square error (RMSE) of the residual
maps, the power spectrum of the mass maps and residual maps, and the
1-point distribution function (PDF) of the mass maps.

The tests performed suggested that using priors to recover the converge
field from a noisy realisation of the shear field generally improves the recon-
struction, i.e., the recovered maps are more similar to the true convergence
field. In particular, the Wiener and Glimpse methods generally delivered
larger values of the Pearson coefficient and smaller values of the RMSE
among the four methods. We furthermore showed that assuming B-modes
to be null reduces the effect due to masked areas and missing data. As a
downside, we also showed how the choice of the prior can make the compar-
ison of certain statistics with theoretical predictions particularly complex.
E.g., we showed that the priors assumed by the Wiener and Glimpse map
methods can severely dampen the amplitude of the measured power spec-
trum, making a direct comparison with the standard theoretical predictions
meaningless.

We then presented the official (blinded) DES Y3 mass maps, obtained
with the four different methods, and assessed their robustness against a
number of systematic maps representing catalogue properties and observing
conditions. We furthermore correlated the maps with redMaPPer clusters,
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showing that the clusters sit on top of the most overdense regions identified
by the mass maps.

We stress that the choice of the particular mass map method depends on
the goals and details of the science application. For instance, cosmological
analyses using Wiener and Glimpse map methods necessarily need to for-
ward model the desired statistics and data vectors with N-body simulations,
due to the difficulties in theoretically modelling the effects of their priors.
If a comparison with analytical predictions is more desirable, the KS or No
B-mode methods can be used. Among the two, the No B-mode method
recovers the correct amplitude of the power spectra of the convergence field
at every scales, without the need of further modelling mask effects.

In the next Chapter we focus on one particular science application of
the mass map: we use the second and third moments or the mass maps to
constrain cosmological parameters.
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Chapter 7

Cosmology with mass map
moments

7.1 Introduction

A map of the mass distribution of the Universe, or the large-scale struc-
ture (LSS), contains a vast amount of cosmological information. A given
cosmological model predicts the spatial statistics of the mass distribution
as well as its evolution over time. One of the cleanest ways to probe the
mass distribution in the Universe is through weak (gravitational) lensing.
Gravitational lensing refers to the phenomenon that light rays from distant
galaxies bend as they travel through space-time, causing distortion of the
observed galaxy images. This is because the space-time is perturbed by mass
distribution between the galaxy and the observer according to General Rel-
ativity (Einstein, 1936). Weak lensing is the regime where this perturbation
is small; its effect is usually much smaller than the noise on a single galaxy
basis, and the signal is extracted statistically using very large ensembles of
galaxies. As lensing is a purely gravitational effect, it is directly sensitive
to the total mass distribution compared to other cosmological probes that
use galaxies as tracers of the mass density field, such as galaxy clustering
(for a review of weak gravitational lensing see e.g., Bartelmann & Schneider,
2001).

A key element of a weak lensing analysis is to have a large number of
galaxies with well-measured shapes. This means that we need 1) cosmolog-
ical surveys that collect photons from as many galaxies as possible, and 2)
well-controlled systematic errors in the shape measurement of these galaxies.
Motivated by the potential cosmological power of weak lensing, photometric
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galaxy surveys targeted at weak lensing science have been operating over
the past two decades. Today, unprecedented large galaxy surveys such as
the Dark Energy Survey (DES, Flaugher, 2005), the Hyper Suprime-Cam
(HSC) Subaru Strategic Program (Aihara et al., 2018), the Kilo-Degree Sur-
vey (KiDS, de Jong et al., 2013) are all pushing the limits of weak lensing
measurements.

Most of the current weak lensing analyses have focussed on tomographic
2-point correlation measurements (e.g. Troxel et al., 2018; Hildebrandt et al.,
2017; Hikage et al., 2019). With the past two decades of work, the theoretical
modelling of the shear 2-point correlation function has matured significantly.
Although there is still active research on, for example, the modelling of the
small scales and of non-linear lensing corrections,the baseline theory of shear
2-point correlation function is reasonably robust. State-of-the-art datasets
from the first year (Y1) of DES currently give the tightest constraints from
cosmic shear surveys on the Universe’s clustering amplitude under a ΛCDM
cosmology, S8 ≡ σ8

√
Ωm/0.3 = 0.782+0.027

−0.027 (Troxel et al., 2018). The pa-
rameter S8, which is a combination of σ8 (the amplitude of structure in the
present day Universe, parameterised as the standard deviation of the linear
overdensity fluctuations on a 8h−1 Mpc scale) and Ωm (the density of the
total matter today) is designed to be approximately the parameter most
constrained by weak lensing observations. We note that these constraints
are at a level similar to those provided by the cosmic microwave background
(CMB) from the Planck satellite S8 = 0.841+0.027

−0.025, when marginalising over
neutrino mass and considering the same parameter space as DES (see Troxel
et al. 2018, table III).

However, there is much more information stored in the matter fields
beyond what can be captured by 2-point statistics. Two-point correlation
functions only capture the Gaussian information stored in the field, while
it is well known that the probability distribution function (PDF) of the
galaxy density contrast in the late Universe has a 1-point distribution that
is approximated better as log-normal than Gaussian (Hubble, 1934; Coles
& Jones, 1991; Wild et al., 2005). Over the years, efforts have been made to
explore statistics beyond 2-point for cosmology. These include 3-point cor-
relation functions and bi-spectrum (Takada & Jain, 2003, 2004; Semboloni
et al., 2011; Fu et al., 2014), weak lensing peak statistics (Dietrich & Hart-
lap, 2010; Kratochvil et al., 2010; Liu et al., 2015; Kacprzak et al., 2016;
Martinet et al., 2018; Peel et al., 2018; Shan et al., 2018), higher moments of
the weak lensing convergence field (Van Waerbeke et al., 2013; Petri et al.,
2015; Vicinanza et al., 2016; Chang et al., 2018; Vicinanza et al., 2018; Peel
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et al., 2018), the PDF of the weak lensing convergence field (Patton et al.),
density-split statistics (Friedrich et al., 2018; Gruen et al., 2018), Minkowski
functionals (Kratochvil et al., 2012; Petri et al., 2015; Vicinanza et al., 2019;
Parroni et al., 2020) and the Minimum Spanning Tree (MST, Naidoo et al.
2019). For some of these summary statistics (peak statistics, Minkowski
functionals), one major challenge is that no analytic theoretical prediction
of the target statistics exist and cosmological constraints must come from
a large number of numerical simulations that span a range of cosmological
parameters. In addition, these simulations also need to be closely matched
to data and it is not clear what the requirements are for the matching be-
tween simulation and data (though there exists some work in systematically
addressing this question, e.g. Bruderer et al., 2016; Kacprzak et al., 2019).
With the increasingly large datasets, the demand on simulations for these
statistics become increasingly hard to meet. For the other statistics where
analytical forms exist (3-point function, higher moments, PDF, density split
statistics), most of the exploration work has been carried out with idealised
simulations that in many respects do not represent the survey data. One
of the reasons for this is that once one moves beyond 2-point statistics, the
computation of the statistic estimator and the theoretical modelling of the
signal become more complicated. This means that the noise and systematic
effects propagate non-trivially.

In this Chapter we focus on using the second and third moments of
the weak lensing convergence field to constrain cosmology using the third
year (Y3) of DES data. The modelling of second and third moments is
based on theoretical predictions, rather than relying on large suites of N-
body simulations. The goal of this Chapter is to describe and validate
the methodology using simulations, determining the lower bounds on scales
where systematic or modelling uncertainties are not expected to affect the
cosmological analysis.

First studied in Jain & Seljak (1997), the moments of the weak lensing
convergence field is one of the simpler high-order statistics both in terms
of the measurement and in terms of the theoretical modelling. Several pa-
pers (e.g., Gaztanaga & Bernardeau 1998; Fosalba et al. 2008; Van Waerbeke
et al. 2013; Pujol et al. 2016; Chang et al. 2018) have performed various mo-
ments measurements on simulations and/or data and compared the results
with theoretical predictions, although this information was not then used to
place constraints on cosmological parameters. In Vafaei et al. (2010), the au-
thors studied the tradeoff between different survey strategies in CFHTLenS
for combining two and three-point statistics using simulations. They con-
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cluded that combining two and three-point statistics of the convergence field
could increase the cosmological constraints by 10-20 per cent, in the case
of CFHTLens data. In Petri et al. (2015), the authors used a set of sim-
ulations with different cosmological parameters to study how the moments
of the convergence field can help constrain cosmology. They included up to
the fourth moment and showed that the constraints improve by up to 20-30
per cent compared to the power spectrum-only constraints.

We build on the previous work and make several improvements. First,
we use an analytic framework to incorporate the effect of masking, adapting
a well-tested pseudo angular power spectrum estimation formalism (pseudo-
C` in the following). Second, we include several systematic effects that are
commonly accounted for in shear 2-point correlation function measurements
and are key to obtaining unbiased cosmological constraints: namely, shear
calibration bias, photometric redshift calibration uncertainty and intrinsic
alignment. Third, we test how robust our statistics are to small-scales,
higher order lensing corrections such as reduced shear and source cluster-
ing, and to the effect of small-scales baryonic physics. Finally, we test our
framework with two different sets of simulations (simple log-normal simu-
lations and full N-body simulations that match the characteristics of the
dataset of interest), each suited for specific purposes. Although the simula-
tions and analysis choices here are specific to the DES Y3 data, we note that
the general approach in this Chapter can be easily transferred to a different
dataset.

This Chapter is organised as follows. In § 7.2 we describe how we gen-
erate the weak lensing convergence maps from a shape catalogue using a
generalisation of the Kaiser & Squires (1993b) algorithm. In the same sec-
tion, we further show how the second and third moments of this convergence
map can be modelled, taking into account the effect of the mask as well as
other systematics. In § 7.3 we describe the characteristics and purpose of
the two set of simulations used in this work. We test the validity of our
modelling with simulations in § 7.4 and determine the regime where our
model can correctly predict the second and third moments. In § 7.5 we
derive the final components needed for a cosmology analysis: the covariance
matrix, the scale cuts, and the likelihood. We describe also a fast emulator
for evaluating the theory prediction for the cosmology inference. In § 7.6 we
determine the final fiducial scale cuts by examining how the cosmological
constraints are biased as a function of scale cuts, and we forecast the cos-
mological constraints for DES Y3 and Y6 data. We summarise our findings
in § 7.7.
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7.2 Map making and theoretical modelling

In order to extract cosmological information from weak lensing convergence
maps, we need to first construct the convergence map κ from the observed
weak lensing shear γ. The theoretical modelling of the moments measured
from the convergence map depends on the particular procedure one took to
construct the map. As for the map making procedure, we rely on the full-sky
Kaiser-Squires method outlined in § 6.3. The full-sky Kaiser-Squires method
we implemented in this Chapter does not assume any prior knowledge of the
convergence field to be reconstructed. We are not considering here the other
methods explored in Chapter 6, as our goal is to model the convergence
moments from theory. Indeed, including the additional effects of the priors
assumed during the map-making process on the maps moments would be
difficult. On the other hand, these alternative methods are valuable when
N-body simulations are used to model the observables (e.g., Petri et al. 2015;
Fluri et al. 2018).

7.2.1 Theoretical modelling of convergence moments

We adopt the theoretical model for second and third moments (variance
and skewness) of the convergence field using a non-linear extension of cos-
mological perturbation theory (Van Waerbeke et al., 2001; Scoccimarro &
Couchman, 2001; Bernardeau et al., 2002).

As we are interested in highlighting the features of our convergence field
at different angular scales, we smooth our recovered convergence fields using
a top-hat filter at different angular scales. We chose a top-hat filter to
facilitate the analytical evaluation of third moments, but different filters
with different properties can be chosen (e.g., Van Waerbeke et al. 2013 used
a Gaussian filter). A top-hat filter W in harmonic space of smoothing length
θ0 is defined as:

W`(θ0) =
P`−1(cos(θ0))− P`+1(cos(θ0))

(2`+ 1)(`− cos(θ0))
, (7.1)

where P` are Legendre polynomials of order l. The variance of matter con-
trast δ smoothed by such a filter at a given comoving distance χ is:

〈δ2
θ0,NL〉(χ) =

∑
`

2`+ 1

4π
PNL(`/χ, χ)F 2

`W`(θ0)2, (7.2)
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where F` is the pixel window function (modelled using the pixel window
function provided by HEALPIX) and PNL(`/χ, χ) the non linear power spec-
trum. For the latter we used HALOFIT as detailed in Takahashi et al. (2014)
and assumed in the fiducial DES Y3 analysis.

For the smoothed version of the third moment (or skewness) of the mat-
ter contrast, at leading order in perturbation theory it reads:

〈δ3
θ0,NL〉(χ) = S3[〈δ2

θ0,NL〉(χ)]2, (7.3)

where S3 is the reduced skewness parameter. The analytical derivation of
the reduced skewness parameter is performed to leading order, which is
linear in the power spectrum, but as such predictions perform well even in
the mildly non-linear regime (k ≈ 0.1h−1 Mpc Bernardeau et al. 2002), we
assume their validity when a non-linear power spectrum (the HALOFIT from
Takahashi et al. 2014) is used to compute the variance. We also implement a
refinement (in the form of analytical fitting formulae) of the treatment of the
skewness at small scales based on N-body, cold dark matter only simulations.
In this Chapter we focus on the analytical fitting formulae presented in
Scoccimarro & Couchman 2001 (hereafter SC01) and Gil-Maŕın et al. 2012
(hereafter GM12), but we note that there are alternative formulae such as
that recently presented in Takahashi et al. (2019). The SC01 and GM12
analytical refinements come with a modelling uncertainty (Van Waerbeke
et al., 2001; Semboloni et al., 2011; Harnois-Déraps et al., 2016; Simon et al.,
2015), which ultimately depends on the resolution of the N-body simulations
that have been used to perform the fit and on the flexibility of the formulae
to model all the configurations (e.g., equilateral, flattened, squeezed) of the
measured bispectrum. In this Chapter we implement the analytical fitting
formulae from SC01, as they provide a better fit to the N-body simulations
used in this Chapter to validate the methodology. The analytical expression
of the reduced skewness parameter is provided in Appendix C.1.

The analytical expression of the second and third moments of the conver-
gence field for a given redshift distribution are provided under the Limber
approximation (Limber, 1953). The Limber approximation allows us to re-
late the 3D spatial clustering properties of the density field to 2D projected
quantities. The approximation usually breaks down at small scales and for
narrow redshift distributions. Under such approximation, the second and
third moments read:

〈κ2
θ0
〉i,j =

∫
dχ
qi(χ)qj(χ)

χ2
〈δ2
θ0
〉(χ), (7.4)
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〈κ3
θ0
〉i,j,k =

∫
dχ
qi(χ)qj(χ)qk(χ)

χ4
〈δ3
θ0
〉(χ). (7.5)

The superscripts i, j, k refers to different tomographic bins. We have dropped
the subscript NL for brevity. The term qi represents the lensing kernel and
reads:

qi(χ) =
3H2

0 Ωm

2c2

χ

a(χ)

∫ χh

χ

dχ′ni(z(χ′))dz/dχ′
χ′ − χ
χ

, (7.6)

where H0 is the Hubble constant at present time, c the speed of light, ni(z)
the normalised redshift distribution of a given tomographic bin, and a(χ)
the scale factor.

We note that the variance and skewness of the convergence field have
differing dependencies on the parameters Ωm and σ8 (Seljak & Zaldarriaga,
1996; Bernardeau et al., 1997).

Effects of masking

One of the problems in estimating the convergence field from the observed
shapes is that we observe only a portion of the sky. This means that the
reconstruction will suffer edge effects, due to the convolution with a window
function representing the survey footprint. Some methods deal with mask
effects at the level of map making (Pires et al., 2009; Mawdsley et al.),
whereas in this work, we will account for the mask effects in our theoretical
predictions using a pseudo-C` formalism (Brown et al., 2005; Hikage et al.,
2011).

The pseudo-C` formalism correctly recovers the shear power spectrum
estimated from the shear field in the case of partial sky coverage. It also
predicts mode mixing (that is, part of the E-modes leaks into B-modes and
vice-versa). In particular, let us consider:

ĈEE
` =

1

2`+ 1

∑
m

|γ̂E,`m|2, (7.7)

ĈEB
` =

1

2`+ 1

∑
m

γ̂E,`mγ̂
∗
B,`m, (7.8)

ĈBB
` =

1

2`+ 1

∑
m

|γ̂B,`m|2, (7.9)

where γ̂E,`m and γ̂B,`m have been defined in the previous Chapter. Then,
we can write the masked (pseudo) spectra as the convolution of the true
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spectra with a mode-coupling matrix:

Ĉ` =
∑
`′

M``′C`′ , (7.10)

where we have introduced the vector C` ≡ (CEE
` , CEB

` , CBB
` ). The mode-

mode coupling matrix M is expressed in terms ofMEE,EE
``′ , MBB,BB

``′ , MEB,EB
``′ ,

MEE,BB
``′ . The mode-coupling matrices contain information about the survey

geometry; analytical expressions for the mode-coupling matrices in terms of
the window function can be found in Hikage et al. (2011) and in Appendix
C.2. The pseudo-C` formalism can be incorporated in Eq. 7.4 as:

〈κ2
θ0
〉i,j,EE/BB =

∫
dχ
qi(χ)qj(χ)

χ2
×∑

`

2`+ 1

4π
f−1
` W`(θ0)2

∑
`′

M
EE/BB,EE
``′ PNL(`′/χ, χ)F 2

`′f`′ . (7.11)

In the above equations, the factor f` = [(`+2)(`−1)]/[`(`+1)] accounts for
the fact that the mode-coupling matrix is applied to the shear field rather
than to the convergence field directly. Depending on the mode-coupling
matrix used (MEE,EE

``′ or MBB,EE
``′ ), with Eq. 7.11 we can predict the variance

of both E and B modes of the recovered convergence field. As for the
third moments, if we neglect the contribution of the masking to the reduced
skewness parameter S3, we can write:

〈κ3
θ0
〉i,j,k,EE/BB =

∫
dχ
qi(χ)qj(χ)qk(χ)

χ3
S3[〈δ2

θ0,NL
〉EE/BB(χ)]2. (7.12)

We note that neglecting the effects of masking on S3 does not imply we are
neglecting the effects on masking on the third moment 〈κ3

θ0
〉 but rather

we assume that most of the effect of the mask is included in the term
[〈δ2

θ0,NL(χ)]2. We note that Gil-Maŕın et al. (2015) made a similar assump-
tion when modelling mask effects in the bispectrum predictions of SDSS
DR11 BOSS galaxies, demonstrating its validity for modes smaller than the
size of the footprint. We show in § 7.4 that Eq. 7.12 captures the mask
effects on the third moment well for the scales considered in this analysis.

Systematic effects

Astrophysical and measurement systematic effects are modelled through
nuisance parameters. We marginalise over all the nuisance parameters when
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Table 7.1: Cosmological, systematic and astrophysical parameters. The cosmological
parameters considered are Ωm, σ8, Ωb (the baryonic density in units of the critical den-
sity), ns (the spectral index of primordial density fluctuations) and h (the dimensionless
Hubble parameter). The nuisance parameters are the multiplicative shear biases mi and
the photometric uncertainties in the mean of the weak lensing samples ∆zi. The astro-
physical parameters AIA,0 and αIA describe the intrinsic alignment model. We report the
boundaries for both Flat and Gaussian priors. For Gaussian priors we also report the
mean and the 1 σ in the prior column. Priors are described in § 7.2.1.

Parameter Range Prior
Ωm 0.1...0.9 Flat
σ8 0.4...1.3 Flat
h100 55...90 Flat
ns 0.87...1.07 Flat
Ωb 0.03...0.07 Flat

m1-m4 × 102 −10.0...10.0 0.0 ± 2.3

∆z1 × 102 −10.0...10.0 0.0 ± 1.6

∆z2 × 102 −10.0...10.0 0.0 ± 1.3

∆z3 × 102 −10.0...10.0 0.0 ± 1.1

∆z4 × 102 −10.0...10.0 0.0 ± 2.2
AIA,0 −5.0...5.0 Flat
αIA −5.0...5.0 Flat

estimating the cosmological parameters. Values and priors are summarised
in Table 7.1. As at the moment of writing this work Y3 priors were not
finalised yet, we assumed Y1 priors when needed.

Photometric redshift uncertainties. Photometric redshift uncertainties
are parametrized through a shift ∆z in the mean of the redshift distribution:

ni(z) = n̂i(z + ∆z), (7.13)

where n̂i is the original estimate of the redshift distribution coming from
the photometric redshift code. We assume DES Y1 priors for the shift
parameters.

Multiplicative shear biases. Biases coming from the shear measurement
pipeline are modelled through an average multiplicative parameter 1+mi for
each tomographic bin. Such parameter affects our moments in the following
way:

〈κ2
θ0
〉i,j → (1 +mi)(1 +mj)〈κ2

θ0
〉i,j, (7.14)

〈κ3
θ0
〉i,j,k → (1 +mi)(1 +mj)(1 +mk)〈κ3

θ0
〉i,j,k. (7.15)
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Gaussian DES Y1 priors are assumed for each of the mi.
Intrinsic galaxy alignments (IA). IA is modelled according to the non-

linear alignment (NLA) model (Hirata & Seljak, 2004; Bridle & King, 2007).
It can be incorporated in the modelling by modifying the lensing kernel:

qi(χ)→ qi(χ)− A(z(χ))
ni(z(χ))

〈ni〉
dz

dχ
. (7.16)

The NLA model is usually used in the context of 2-point correlation
statistics, but the above equation generalises it to the third moments case
as well. The amplitude of the IA contribution can be written as a power-law:

A(z) = AIA,0

(
1 + z

1 + z0

)αIA c1ρm,0
D(z)

, (7.17)

with z0 = 0.62, c1ρm,0 = 0.0134 (Bridle & King 2007, Krause et al. 2017) and
D(z) the linear growth factor. We marginalise over AIA,0 and αIA assuming
flat priors.

Moments estimator

To estimate the moments of a smoothed map, we use a simple estimator:

〈κ̂2
θ0
〉i,j =

1

Ntot

Ntot∑
pix

κiθ0,pixκ
j
θ0,pix, (7.18)

〈κ̂3
θ0
〉i,j,k =

1

Ntot

Ntot∑
pix

κiθ0,pixκ
j
θ0,pixκ

k
θ0,pix, (7.19)

where i, j, k refers to different tomographic bins. The sum runs over all
the pixel of the sky, also outside the footprint: the transformation from
the shear field to the convergence field is non-local and some of the power
is transferred outside the footprint, despite most of it remaining confined
to the footprint. The lack of power outside the footprint (due to the fact
that the shear field is not defined there) is taken into account by the mode-
coupling matrices (Eqs. 7.11, 7.12).

Due to the presence of shape noise, the measurement of galaxy shapes
will be a noisy estimate of the shear field γ. This also means that our
estimate of the convergence field will be noisy:

κE,obs = κE,true + κE,noise, (7.20)
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κB,obs = κB,true + κB,noise. (7.21)

In the above equations, we omitted the smoothing angle θ0. The contri-
bution of the noise to the convergence field can be estimated by randomly
rotating the shape of the galaxies and applying the full-sky spherical har-
monics approach to obtain the convergence (Van Waerbeke et al., 2013;
Chang et al., 2018). As the random rotation should completely erase the
cosmological contribution, the resulting convergence signal will just contain
noise and should average to 0 (but with a non-negligible variance).

It follows that when estimating second and third moments from noisy
convergence maps it is necessary to properly de-noise the measured mo-
ments. Following Van Waerbeke et al. (2013):

〈κ̂2〉i,j = 〈κ2〉i,j − 〈κκrand〉i,j − 〈κrandκ〉i,j − 〈κ2
rand〉i,j, (7.22)

〈κ̂3〉i,j,k = 〈κ3〉i,j,k − 〈κ3
rand〉i,j,k−[

〈κ2
randκ〉i,j,k − 〈κrandκ

2〉i,j,k + cycl.
]
, (7.23)

where cycl. refers to the cyclic permutation of the indexes i, j, k for the terms
in parenthesis. In the above equations, the term 〈κ2

rand〉i,j is the noise-only
contribution to the second moment of the tomographic bins i, j; for i 6= j
it vanishes. The map κrand represents the estimate of the shape noise con-
tribution to the convergence map; it is estimated by randomly rotating the
galaxy shapes. The intrinsic ellipticity distribution of observed galaxies is
not expected to be perfectly Gaussian, but by the central limit theorem,
it would be the correct distribution in the limit of large numbers of galax-
ies averaged in the pixels of the convergence map (Jeffrey et al., 2018). If
this holds, also the term 〈κ3

rand〉i,j,k (which is the noise-only contribution to
the third moment of the tomographic bin i, j, k) would vanish. Additional
checks will need to be performed on DES Y3 data, as we do not include po-
tential sources of noise inhomogeneities (e.g. astrophysical or observational
systematics) in this work. Finally, we note that if the convergence field and
the shape noise term in a given map pixel are uncorrelated, mixed terms
should be consistent with zero.

7.3 Simulations

Two different sets of simulations are used to validate our theoretical ap-
proach. These simulations differ in the complexity of the physics included,
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Figure 7.1: Redshift distributions of the 4 tomographic weak lensiong bins (and the full
sample), from a fiducial DES Y3 simulated sample (DeRose et al., 2019). A bin width of
∆z = 0.01 has been used for the histograms.

and are used to validate different parts of our methodology. In particular,
we make use of:

• FLASK simulations (Xavier et al., 2016). These are log-normal realisa-
tions, and are used to produce a large number of realisations (of the
order of 1000) of the shear and convergence fields. They require input
power spectra at the redshift of the observation for their predictions,
so they cannot be used to test the modelling of the second and the
third moments, as they are key ingredients to run the simulations. We
use them to model the covariance matrices of our measurements and
to test the modelling of mask effects.

• Takahashi et al. (2017, hereafter T17) mocks. We use 100 full-sky
gravitational lensing convergence and shear maps obtained from full
N-body simulations and a ray-tracing algorithm described in T17. We
use these to validate the theoretical modelling of second and third
moments over a large number of simulations. We also use them to
check the effect of non-linear lensing corrections in our modelling.

Below we provide a more in-depth description of each of the simulations.

7.3.1 FLASK simulations

The FLASK software (Xavier et al., 2016) allows one to rapidly generate full-
sky, log-normal realisations of a given field (in our case, the convergence
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field). In particular, FLASK assumes the convergence field to be described
by a zero-mean shifted log-normal distribution, where the parameters of
the log-normal probability distribution function (PDF) are chosen to match
the variance and skewness of the input. The lognormal approximation is
usually adopted for the density field (Hubble, 1934; Coles & Jones, 1991;
Wild et al., 2005) and is not expected to exactly hold for the convergence
field, as it is a weighted projection of the mass density field along the line
of sight. Tests on numerical simulations showed a lognormal PDF to be
a reasonable model (e.g Taruya et al. 2002; Hilbert et al. 2011), although
generalised lognormal PDFs have been shown to improve the fit at the tails
of the distribution (Das & Ostriker, 2006; Takahashi et al., 2011; Joachimi
et al., 2011). Observational evidences from DES science verification data
(Clerkin et al., 2017) find that at intermediate scales between 10 and 20
arcmin, the convergence distributions are more lognormal than Gaussian
(at larger scales noise dominates). We show in § 7.6.1 that relying on the
lognormal approximation to build our covariance matrix does not bias the
recovery of the cosmological parameters.

The software requires as inputs a set of auto and cross power spectra and
a log-normal shift parameter. This latter parameter is a combination of the
variance and skewness (Xavier et al., 2016) and it is computed from theory
and fixed to the value at no smoothing. Formally, this means that the third
moment computed in FLASK should match theoretical predictions only at no
smoothing. Slight variations can occur with a non zero smoothing as the
convergence field is not perfectly log-normal. The second moment should
agree at every smoothing scale as the full power spectrum is provided. We
generated theoretical predictions for the power spectra of the convergence
field for four tomographic bins of our weak lensiong source sample. We used
the true redshift distributions of the weak lensiong sample as measured in a
fiducial DES simulated sample (DeRose et al. 2019). Redshift distributions
are shown in Fig. 7.1. We fixed the cosmology of our input power spectra to
be Ωm = 0.286, σ8 = 0.82, Ωb = 0.047, ns = 0.96, h100 = 0.71. We generated
1000 realisations of the convergence fields in the form of HEALPIX maps with
NSIDE = 1024. This resolution is chosen based on the expected number
density of the DES Y3 weak lensing sample. For each of the realisations, we
cut out a DES Y3 footprint using a mask that is close to what will be used

1The values of the cosmological parameters used to compute the covariance are
slightly different than the ones of the mocks used to validate the modelling of second
and third moments. These values have been chosen to facilitate the comparison with
other simulated cosmological analysis for DES Y3.
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for the DES Y3 weak lensing analysis. We assign shape noise to each pixel
εint of the shear fields based on the expected per-component shape noise of
the full DES Y3 weak lensing sample (σε) and the galaxy number density
predicted by FLASK in each pixel (ng,pix), so as εint,pix = σε/[ng,pix]. The
average number densities over the full footprint of each bin are respectively
1.38, 1.36, 1.35, 0.86 gal/arcmin2, while the σε (the standard deviation of the
two components for the measured galaxy shapes) are 0.29, 0.29, 0.29, 0.30.
We use such FLASK mocks to validate our modelling of the mask effects and
to generate covariance matricies for our measurements. In future sections,
to quantify the offset between the third moments generated by FLASK and
the theory predictions, we use the offset function defined as follows:

offset(θ0) ≡
〈κ3

θ0
〉FLASK,full−sky − 〈κ3

θ0
〉theory,full−sky

〈κ3
θ0
〉theory,full−sky

, (7.24)

such that 〈κ3
θ0
〉theory,full−sky(1 + offset(θ0)) = 〈κ3

θ0
〉FLASK,full−sky. The offset

function is 0 at no smoothing (since the shift parameter provided to FLASK

as input is only valid at no smoothing), and reaches values up to ∼ 40 per
cent for θ0 ∼ 200 arcmin.

7.3.2 T17 N-body simulation

The simulations are a set of 108 full-sky lensing convergence and shear maps
obtained for a range of redshifts between z = 0.05 and 5.3 at intervals of
150 h−1 Mpc comoving distance.

Initial conditions were generated using 2LPTIC (Crocce et al., 2006)
and the N-body run using L-GADGET2 (Springel, 2005), consistent with
WMAP 9 year results (Hinshaw et al., 2013): Ωm = 0.279, σ8 = 0.82,
Ωb = 0.046, ns = 0.97, h = 0.7.

The simulations begin with 14 boxes with side lengths L = 450, 900,
1350, ..., 6300 h−1 Mpc in steps of 450 h−1 Mpc, with six independent
copies at each box size and 20483 particles per box. Snapshots are taken
at the redshift corresponding to the lens planes at intervals of 150 h−1 Mpc
comoving distance. The authors checked that the agreement of the average
matter power spectra with the revised HALOFIT (Takahashi et al., 2012) was
within 5 per cent for k < 1 h Mpc−1 at z < 1, for k < 0.8 h Mpc−1 at z < 3,
and for k < 0.5 h Mpc−1 at z < 7. Weak lensing quantities were estimated
using the multiple plane ray-tracing algorithm GRayTrix (Hamana et al.,
2015), and shear and convergence HEALPIX maps with resolution NSIDE =
4096 are provided. Halos are identified in the simulation using the public
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code ROCKSTAR (Behroozi et al., 2013). The simulations do not come with a
galaxy catalogue. For each of the 108 realisations, we produced convergence
maps for the 4 weak lensing tomographic bins by stacking the convergence
snapshots taking into account the redshift distributions of the bins. We
used the same redshift distribution as that used in the FLASK simulations.

7.4 Model Validation with Simulations

In this section we present a series of validation tests with simulations to
show that our model presented in § 7.2.1 does indeed model the second and
third moments of the convergence maps. We first validate our model for
the effect of masking (i.e. the mode-coupling matrix approach) in § 7.4.1,
then validate the remaining components of the modelling of the second and
third moments in § 7.4.2. In §7.4.3 we estimate the potential impact of
baryonic feedback at smal scales; finally, in §7.4.4, we assess the impact of
higher-order lensing corrections (such as reduced shear or source crowding)
not included in our modelling.

7.4.1 Testing mask effects

We first considered the case of no shape noise. We used 1000 FLASK realisa-
tions of the DES Y3 footprint, and measured the convergence field starting
from the shear field using the full-sky Kaiser-Squires method. This has been
done for the four tomographic bins and the non-tomographic sample. We
then smoothed the map with a top hat filter at different smoothing scales.
We choose as an interval θ0 ∈ [3.2, 220] arcmin, and we used 10 equally
(logarithmic) spaced scales (even though we expect scales close to the pixel
size, which is ≈ 3.4 arcmin, to not contain much information).

The (smoothed) second moments, both for the E and B modes, are
shown in the top and middle panels of Fig. 7.2 and compared with theoret-
ical predictions. In the figure, we just show auto-moments (i.e., moments
obtained from maps of the same tomographic bin). We also show the aver-
age of the 1000 partial-sky FLASK realisations, which agrees to better than
0.5 per cent with the theoretical modelling. Without the mode-coupling
matrices, we would have not been able to predict any B-modes. Moreover,
our theoretical predictions for the E-modes would have been biased high, as
no leakage of E-modes into B-modes would have occurred. We note that in
Fig. 7.2 we do not show uncertainties for the average measurements, as they
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Figure 7.2: Second moments (E and B modes) and third moments (E only) measured in
FLASK simulations from partial-sky coverage realisations of the DES Y3 footprint. The
convergence maps are obtained from the realisations of the FLASK shear fields configured
as explained in §7.3.1. Mask effects are included in the theory modelling (black dots,
Eqs. 7.11, 7.12). The “offset” term refers to the function that accounts for the differences
between theory predictions and the average of FLASK moments in the full-sky case (see
text for more details). It is non null only for third moments (FLASK is not expected to
produce the correct third moments for a given input cosmology). Grey bands represent
the measurement from one (taken at random) noiseless FLASK realisation, together with
its uncertainty (measurements uncertainties are estimated in § 7.5.1). Light blue bands
also include shape noise. The average of the measurement over 1000 FLASK realisations
are shown by the blue lines (error bars are omitted). The numbers 11, 22, 33 etc.
in each plot refers to the combination of tomographic bins considered to compute the
moments, while “full” refers to the non-tomographic case. Only auto-correlations are
shown. Upper panels: second moments, E-mode of the convergence maps. Middle panels:
second moments, B-mode of the convergence maps. B-modes are much smaller than
E-modes and are due to mask effects. Lower panels: third moments, E-mode of the
convergence maps. Third moments measured in FLASK simulations are not expected
to match the input theory perfectly (see text for more details); here, the theoretical
predictions for the third moments are replaced by the average measurement of third
moments in many full-sky FLASK realisations.
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Figure 7.3: Second moments and third moments (E-modes) measured in the T17 simu-
lations from partial-sky coverage realisations of the DES Y3 footprint. The convergence
maps have been obtained starting from a realisation of the DES Y3 shear field. Mask
effects are included in the theory modelling (black dots, Eqs. 7.11, 7.12). The label of
the theory modelling points specifies “theory T17” to differentiate it from the FLASK

theory lines, since the two sets of simulations have a slightly different cosmology. Grey
bands represent the measurement from one (taken at random) noiseless T17 realisation,
together with its uncertainty (measurements uncertainties are estimated in §7.5.1). Red
bands also include shape noise. The average of the measurement over 100 T17 reali-
sations are shown by the red lines (error bars are omitted). The numbers 11, 22, 33
etc. in each plot refers to the combination of tomographic bins considered to compute
the moments, while “full” refers to the non-tomographic case. Only auto-correlations are
shown. Upper panels: second moments, E-modes of the convergence maps. Lower panels:
third moments, E-modes of the convergence maps
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are negligibly small; on the other hand, the amplitude of the measurement
uncertainty from a single realisation is represented by the shaded region.

The third moments are shown in the lower panel of Fig. 7.2. We just show
E-modes as B-modes are not measured at any statistical significance. We
cannot directly compare third moments measured from partial-sky FLASK

mocks to masked theory predictions: as explained in § 7.3.1, FLASK simula-
tions are expected to recover the input third moments only at no smoothing;
for larger smoothing scales, we expect (and measure) an offset with respect
to theoretical predictions such that 〈κ3

θ0
〉FLASK,full−sky ∼ 〈κ3

θ0
〉theory,full−sky[1+

offset(θ0)]. To check that we correctly model third moments mask effects in
the partial-sky predictions, we need then to verify that the third moments
computed from partial-sky FLASK realisations follows〈κ3

θ0
〉FLASK,partial−sky ∼

〈κ3
θ0
〉theory,partial−sky[1+offset(θ0)]. This is shown in the lower panel of Fig. 7.2.

The FLASK third moments theory lines include the offset function. These
agree with the average of 1000 DES Y3 (partial-sky) FLASK realisations
within 3 per cent, which is much smaller than the observational uncertain-
ties. We conclude that our mode-coupling matricies deal efficiently with
mask effects also for the third moments.

We next consider a more realistic scenario in which shape noise is in-
cluded. In this case we need to perform the de-noising procedure (Eqs. 7.22,
7.23), which subtracts the shape-noise contributions from the measured mo-
ments. For the second moments we first checked that the mixed terms
(〈κrandκ〉i,j and 〈κrandκ〉j,i) averaged to zero, while the terms 〈κ2

rand〉i,i (cor-
responding to the noise-only second moments) did not and needed to be
subtracted. As for the third moments, we found out that mixed terms of
the form 〈κκ2

rand〉i,j,k did not vanish for some choice of indices and needed
to be subtracted. This is due to source galaxy density - convergence field
correlations that do not vanish at third order. All the other terms, including
〈κ3

θ0,rand〉i,i,i, averaged to zero and did not need to be subtracted.
The de-noised measurements are shown again in Fig. 7.2 (light blue

shaded regions). The measurements are clearly noisier than the previous
case, but we verified that when the averages over the 1000 FLASK realizations
are considered, the match with the theory shows the same level of agreement
as the noiseless case.

7.4.2 Testing second and third moments modelling

To validate our modelling of the second and third moments we need a full
N-body simulation. In particular, we need to validate the E-modes, as
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they will be used in the cosmological analysis (B-modes have a low signal-
to-noise, and they will be mainly used as a diagnostic). To do this, we
use 100 realisations of the shear field obtained using the T17 simulations.
The comparison with the theory (second and third moments, E-modes) is
shown in Fig. 7.3. In the same figure, we also show the average of the 100
realizations of the DES Y3 footprint. For the second moments, the match
with the theory is better than 1 per cent at large scales (comparable with
the uncertainties in the modelling of mask effects) and it is at the level of 2-3
per cent at small scales (comparable with the accuracy of the simulations
at low redshift). The good match at large scales also justifies the use of the
Limber approximation in our modelling.

For the third moments, the theory matches the measurement to better
than 10 per cent at all scales. The modelling at small scales is obtained
including the SC01 analytical refinement based on N-body, cold dark matter
only simulations. We note that without the SC01 formulae, the predictions
of the third moments from perturbation theory only would start departing
from the T17 measurement at ∼ 30 − 40 arcmin, reaching a disagreement
of 80 per cent at 5 arcmin in the first tomographic bin.

7.4.3 Baryonic effects

We discuss in this and in the next subsection the impact of a number of
effects not included in our fiducial modelling. Ultimately, the impact of
these effects (together with the comparison with T17 sims from the previous
section) will directly determine the scales to be used in the cosmological
analysis.

We consider here the possible contamination of our data vector by bary-
onic feedback effects at small scales. Including baryonic feedback models
in the theoretical modelling is an on-going issue in current cosmic shear
analyses, due to the uncertainties in current baryonic feedback models. The
strategy adopted by DES (in the Y1 and Y3 analyses) is to not model bary-
onic feedback effects, but to exclude the scales of the data vector possibly
contaminated by baryonic feedback.

To this aim we contaminate a data vector by the effects of baryonic
feedback as estimated from the OWLS “AGN” simulations (Schaye et al.,
2010; van Daalen et al., 2011). We note that the OWLS suite is not the
only set of simulations including baryonic effects (see, e.g. EAGLE simu-
lation, Hellwing et al. 2016, IllustrisTNG simulations, Springel et al. 2018,
Horizon simulations, Chisari et al. 2018). The impact of baryons on the
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Figure 7.4: Impact of baryonic effects (from OWLS simulations) and two non-linear
lensing corrections to (E-modes) moments. The blue line (OWL) refers to the rescaled
predicted moments including baryonic contributions from AGN feedback. The orange line
(label RS) shows the contribution to reduced shear correction, as measured in simulations.
The green line refers to source-lens clustering (label SL), as measured in simulations. The
grey shaded regions represent the angular scales cut out from the analysis (see § 7.6.1;
as the scales cut is determined only for the tomographic version of the data vector, we
do not show any shaded region for the non-tomographic case).

dark matter power spectrum in the OWLS simulations is large compared to
other simulations, though more extreme models exist. We use the OWLS
predictions to contaminate our data vector and use them as an upper limit
on the magnitude of baryonic effects.

To contaminate the data vector, we proceed in similar fashion to what
was done in the DES Y1 cosmic shear analysis (Troxel et al., 2018). We
rescale the power spectrum so as to include contribution from the OWLS
“AGN” sub-grid prescriptions:

PNL(k, z)→ PDM+baryons

PDM

PNL(k, z), (7.25)

where PDM is the OWLS power spectrum due to dark matter, and PDM+baryons

is the OWLS power spectrum including the “AGN” feedback prescription.
Applying such contamination procedure to the power spectrum should ac-
count for most of the baryonic effects on the third moments as well (Fore-
man et al. 2019 shows that baryonic contributions to the bispectrum go as
P 2

DM+baryons/P
2
DM, at least for the scales under study here).

The effects of contaminating a theoretical data vector with baryonic
feedback are shown in Fig. 7.4, where we show the ratio between a contami-
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nated, theoretical data vector and one that is not contaminated. The OWLS
power spectrum dampens the measured moments at small smoothing scales,
whereas the effect is almost negligible at larger scales. This implies that a
range of small scales needs to be excluded from the cosmological analysis:
including such scales could introduce biases in the cosmological inference.
The angular scales cut that safeguards against possible baryonic effects is
shown in Fig. 7.4 (grey shaded regions) and it is quantitatively determined
with a simulated likelihood analysis in § 7.6.1.

Last, we note that from Fig. 7.4 it is not straightforward to compare the
smoothing scales at which the OWLS power spectrum starts affecting the
moments with the angular scales used in the DES Y1 cosmic shear analysis
(Troxel et al., 2018), as the two probes get contributions from the high
multipoles in harmonic space differently.

7.4.4 Higher-order lensing corrections

We next verify the impact of a number of higher-order lensing corrections to
our theoretical modelling (Schneider et al., 1998, 2002; Schmidt et al., 2009;
Krause & Hirata, 2010). As we have not implemented theoretical modelling
of the following effects, we resort to simulations to asses their impact on the
data vector. We look at three different effects: reduced shear, source-lens
clustering and magnification bias. The first is due to the fact that we cannot
directly observe the shear field, but rather we observe the reduced shear.
Source-lens clustering is due to the correlation between source galaxies and
lensing potentials along the line-of-sight. The convergence field traces the
integrated density contrast up to the position where the sources are detected.
Since we estimate the convergence field from an ensemble of sources at
different redshifts, and the source galaxies are not uniformly distributed
along the line-of-sight, this affects the estimated convergence values. The
effect is enhanced in case of broad redshift distributions. We note that
fluctuations in the density field are also caused by magnification effects
(magnification bias).

The simulation setup of the tests shown in § 7.4.2 did not include such
high order effects. In order to include the reduced shear contribution, we
start from Eq. 6.11 and note that in the weak lensing limit 1/(1−κ) ∼ 1+κ.
It follows that the observed shear has an additional contribution that can
be modelled as:

γobs → γ(1 + κ). (7.26)

191



7.4. MODEL VALIDATION
WITH SIMULATIONS

CHAPTER 7. COS-
MOLOGY WITH MASS

MAP MOMENTS

Source-lens clustering and magnification effects can be modelled by account-
ing for the effect of the density fluctuations along the line-of-sight when
estimating the shear field:

γobs → γ(1 + δobs), (7.27)

where the δobs ≡ 1−Nobs/〈N〉 is the estimated density contrast (Nobs is the
number of galaxies along the line-of-sight and 〈N〉 is the average number
of galaxies). The fluctuations in the density field are due to source galaxies
overdensities and lensing magnification effects. Lensing magnification en-
hances the flux of galaxies and this can locally increase the number density,
as more galaxies pass the selection cuts/detection threshold of the sample;
at the same time, the same volume of space appears to cover a different solid
angle on the sky, causing the observed number density to decrease. At first
order, the impact of source galaxies overdensities and lensing magnification
effects can be modelled as:

δobs = δgal + qκ, (7.28)

with q expected to be of order unity (see Schmidt et al. 2009 for an approx-
imate description of the term q). Summing up Eqs. 7.26 and 7.27:

γobs = γ[1 + δgal + (1 + q)κ]. (7.29)

Reduced shear contributes as ≈ 1 +κ, magnification effects as ≈ 1 + qκ,
lens-source clustering as ≈ 1 + δgal. To test the impact of these effects,
we used the T17 simulations. Using the full-sky spherical Kaiser-Squires
approach, we generated for every redshift layer of the simulations: 1) shear
field γ distributions starting from the convergence maps κ; 2) shear field
distributions with 1 + κ and 1 + δgal contributions (Eqs. 7.26 and 7.27); 3)
density contrast field distributions 1 + δobs. We then stacked the redshift
layers together according to the redshift distributions of the weak lensing
tomographic bins, and generated the following maps:

〈γ〉pix(θ) ≈
∫
dzn(z)γ(z, θ)∫

dzn(z)
, (7.30)

〈γ〉RS
pix(θ) ≈

∫
dzn(z)(1 + κ(z, θ))γ(z, θ)∫

dzn(z)
, (7.31)

〈γ〉SL
pix(θ) ≈

∫
dzn(z)(1 + δ(z, θ))γ(z, θ)∫

dzn(z)(1 + δ(z, θ))
. (7.32)
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Eqs. 7.30, 7.31 and 7.32 are, respectively, the shear fields with no non-
linear lensing corrections, with reduced-shear contributions and source-lens
clustering. As for the latter, we divided by the integrated density field to
mimic the map making process, where each pixel contains the average of
the shear field along the line of sight.

The impact of such corrections on E modes are shown in Fig. 7.4. We
estimated the moments from a full-sky, noise-free realisation of the simula-
tion. For the reduced shear and source-lens clustering we considered as a
“theory” the moments estimated from the same realisation of the simula-
tions using Eq. 7.30 to estimate the shear field. We do not show error bars
for the moments measurement as we expect them to be much smaller than
DES Y3 uncertainties2. We also do not show magnification effects as they
are of the same order as the reduced-shear correction (assuming q of the
order of unity). We find that these non-linear lensing corrections are much
smaller then DES Y3 uncertainties and sub-dominant with respect to bary-
onic effects. We checked that the small bias due to source-lens clustering
at very large scales of the third moments does not affect the cosmological
analysis (at very large scales, the signal-to-noise for the third moments is
much smaller than 1, thus, a 5 per cent bias on the signal does not bias the
cosmological constraints).

7.5 Covariance and Likelihood

7.5.1 Covariance estimation

To correctly infer cosmological parameters from our data, we need an accu-
rate estimate of the measurement uncertainty. We estimate the covariance
from 1000 independent realisations of the FLASK simulation. For each FLASK

realisation, we measure the second and third moments of the smoothed con-
vergence field as explained in § 7.4.1. We then build our covariance matrix
as:

Ĉ =
1

ν

Ns∑
i=1

(d̂i − d̂)(d̂i − d̂)
T
, (7.33)

2First, since we are considering the full sky, we expect the covariance of the moments
measurement to be roughly ≈ 8 times smaller. Second, as we are using the moments of
the same realisation with no non-linear lensing corrections as the “theory”, we can expect
the measurements to be highly correlated, and the uncertainties in their ratio should be
very small as cosmic variance would cancel.
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Figure 7.5: Measured correlation matrix of second and third moments from 1000 FLASK

simulations (lower right triangle) and from 100 T17 simulations (upper left triangle). A
24h−1 Mpc scale cut has been applied.
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Figure 7.6: Diagonal elements of the covariance of the second and third moments esti-
mated from FLASK simulations. The x-axis shows the corresponding data vector entries.
We show separate contributions due to shape noise and cosmic variance. For the third
moments, we also show the modelling uncertainties related to the small scales analyt-
ical fitting formulae. For comparison, we also show the covariance estimated from the
T17 simulations. For the total covariance, we show uncertainty due to the finite num-
ber of simulation realisations. The shaded regions represent the scales excluded in the
cosmological analysis (a 24h−1 Mpc scale cut has been applied).
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where ν = Ns − 1 with Ns the number of realisations, d̂i the data vector
measured in the i-th simulation and d̂ the sample mean. The data vector is
made of a combination of second and third moments as measured at different
smoothing scales.

Within single realisations, variations in the measured moments among
different simulations are mostly due to two different contributions: 1) a
combination of galaxy intrinsic shape and measurement noise, or “shape
noise”, and 2) the cosmic density field inside the DES Y3 footprint is a
random realisation of the underlying cosmology, or “cosmic variance”. For
third moments, we also include in our covariance a “modelling uncertainty”
related to the analytical fitting formulae describing the third moments at
small scales. To this aim, we add to the diagonal part of the covariance
the difference between SC01 and GM12 squared (this approach is similar to
the one adopted by Simon et al. 2015, who included a 20 per cent r.m.s in
the covariance to take into account small-scale modelling uncertainties in
the bispectrum). We note that for the scale cuts used in this analysis, the
contribution of such modelling uncertainty to the error budget is small (see
Fig. 7.6 and Appendix C.1).

The measured correlation matrix is shown in Fig. 7.5. The matrix was
obtained using Eq. 7.33 and selecting the data vector elements passing a
24h−1 Mpc scale cut (we selected the scales θ0 such that θ0 > R0/χ(〈z〉),
where χ(〈z〉) is the comoving distance of the mean redshift of a given to-
mographic bin and R0 = 24h−1 Mpc). Values at different smoothing scales
for the same moment are highly correlated. Fig. 7.5 also shows that second
and third moments are not very correlated. This is mostly due to shape
noise and third moment modelling uncertainties at small scales that wash
out existing correlations.

The values of the diagonal elements of the covariance matrix, relative
to values of their data vector entries, are shown in Fig. 7.6, for both FLASK

and T17 simulations. We also show the errors due to the finite number of
simulation realisations. One can see that for both second and third moments
the intermediate scales are the ones with better signal-to-noise, and that
in general second moments have a much better signal-to-noise than third
moments.

The sample variance part of the covariance is cosmology-dependent and
dominates at large scales. We do not expect this cosmological dependence to
significantly impact the recovery of cosmological parameters (see discussion
in § 7.6.1). We also note here that the lognormal approximation assumed
by FLASK needs to be checked for the sample variance part of the covariance

196



7.5. COVARIANCE AND
LIKELIHOOD

CHAPTER 7. COS-
MOLOGY WITH MASS

MAP MOMENTS

for third moments. However, the scales dominated by sample variance have
a smaller signal-to-noise for the third moments; moreover, despite FLASK

limitations, Fig. 7.6 shows that the FLASK and T17 covariances agree within
uncertainties. In Appendix C.3 we provide further evidence that the uncer-
tainties in the modelling of the third moments covariance have little effect
on the cosmological inference.

We therefore decided to rely on FLASK simulations to build our fiducial
covariance because the cosmological parameters can be easily changed and
we can produce a large number of simulations. The T17 simulations have a
fixed cosmology, and, above all, are limited in numbers, causing the inverse
of the covariance matrix to be extremely noisy (and biased, see, e.g., Hartlap
et al. (2007)). However, in the next section we show an implementation
of a data-compression algorithm that greatly reduces the size of the data
vector (and the noise in the covariance due to the paucity of simulations).
The data compression algorithm is implemented in our fiducial analysis
and in principle allows us to run our cosmological pipeline also using the
T17 covariance (although it will still be noisier than the FLASK covariance).
While we still use FLASK as our fiducial covariance, we show in Appendix C.3
that the differences in the recovered cosmological parameters between using
the T17 covariance (in combination with the data compression algorithm)
or FLASK covariance are small.

7.5.2 Data-compression

To reduce the noise in our covariance matrix estimated from FLASK mocks,
we implement the MOPED data-compression algorithm (Tegmark et al.,
1997; Heavens et al., 2000; Gualdi et al., 2018). We follow Heavens et al.
(2000) and include a data-compression scheme based on the Karhuned-Loève
algorithm. The algorithm works by assigning weights to each element of
the data vector that are proportional to the sensitivity of the element to
the variation of a given model parameter. In such a way, it is possible to
reduce the dimension of the data-vector to the number of model parameters
considered. The compressed data vector can be written as:

dcompr
i = 〈d〉T,i Ĉ−1d ≡ bid, (7.34)

where d is the full-length data vector, Ĉ is the measurement covariance and
dcompr
i is the i-th element of the compressed data vector. The index i refers

to the i-th model parameter p considered, and 〈d〉T,i is the derivative of the
model data vector with respect to that parameter.
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The above equation assumes that the dependence of the covariance on
cosmological parameters is mild (∂ lnC/∂ ln pi � 1). While being reason-
able, we do not explicitly check the latter assumption as it would require
producing many covariance matricies, which is computationally expensive.
We also note that for the compression algorithm to be lossless, the likeli-
hood of the non-compressed data vector must be Gaussian. We check this
in Appendix C.3, and we show that the uncompressed data vector shows
only mild deviations from Gaussianity. We note, however, that we expect
the compressed data vector to have a more Gaussian distribution, due to
the central limit theorem (Heavens et al., 2017). We show this in § 7.6.1.

In general, if one or more assumptions underlying the data-compression
algorithm are violated, we can expect the compression to be not optimal. In
this case the credible regions would be larger than they could be (Heavens
et al., 2017; Alsing et al., 2018), but the parameter inference would still be
valid.

To implement the algorithm described in Eq. 7.34, we use the FLASK

covariance, and we estimate the derivative of the data vector using a 5-point
stencil derivative centred on the true value of the simulation parameters.
As model parameters we use the five cosmological parameters and all the
nuisance parameters described in § 7.2.1. The compressed covariance can
be easily obtained as:

Ĉcompr
ij = bTi Ĉbj. (7.35)

We defer the validation of the compression algorithm to Appendix C.3,
where we compare the posterior distributions obtained with and without
the data-compression algorithm. In general, we find smaller contours for the
chains run with the compressed data vector, as expected by the lower noise
in the covariance (we explain how we deal with the noise in the covariance
in the next section).

7.5.3 Data vector and likelihood

The final data vector includes all the “auto” moments of different tomo-
graphic bins (e.g., [1, 1], [1, 1, 1], [2, 2], [2, 2, 2]) and the “cross” moments (e.g.,
[1, 2], [1, 1, 2], [1, 2, 2]), for a total of 10 combinations for second moments
and 20 combinations for third moments. The full data vector is shown in
Appendix C.4. The scale cuts are discussed in the next section.

We evaluate the posterior of the parameters conditional on the data by
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assuming a Gaussian likelihood for the data, i.e.

−2 lnL = f2f1[d̂−M(p)]Ĉ−1[d̂−M(p)]T (7.36)

(see § 7.6.1 for an investigation of this assumption). Here M(p) is our theo-
retical model, d̂ is the data vector, and Ĉ−1 is the inverse of our covariance
estimate. The posterior is then the product of the likelihood and the priors.
Note that the quantities M(p), d̂ and Ĉ−1 in Eq. 7.36 are to be considered
compressed quantities, and we have dropped the superscript “compr” for
brevity. The terms f1 and f2 account for noise introduced when the co-
variance matrix is estimated from random realisations of the data. Even
if a covariance estimate Ĉ from Nsims random realisations is an unbiased
estimate of the true covariance of the data, its inverse Ĉ−1 is only a biased
estimate of the true precision matrix C−1 (Hartlap et al., 2007). This bias
can be corrected with the multiplicative factor

f1 =
Nsims −Ndata − 2

Nsims − 1
, (7.37)

where in our case the number of independent realisations used to estimate
the covariance is Nsims = 1000, and Ndata is the length of the data vector.
Note that this is just an approximate treatment of the noise in the covari-
ance matrix, since the data likelihood depends on the precision matrix in
a non-linear way. Sellentin & Heavens (2016) have devised a more accu-
rate treatment, taking into account the impact of the covariance estimation
noise on the entire likelihood. We investigate their alternative likelihood in
Appendix C.3 and find that after our data compression it has a negligible
effect.

There is a second - and often more severe - problem in estimating the
likelihood of data from a finite number of random realisations that is not
solved by the likelihood of Sellentin & Heavens (2016). This problem is
that the noise in a covariance estimate does not just change the width of
parameter contours but also their location (Dodelson & Schneider 2013, see
also Fig. 1 in Friedrich & Eifler 2018 for a simple demonstration of the
effect). An approximate way to take this into account is to multiply our
log-likelihood by

f2 =

[
1 +

(Ndata −Npar)(Nsims −Ndata − 2)

(Nsims −Ndata − 1)(Nsims −Ndata − 4)

]−1

. (7.38)

This correction (dubbed Dodelson-Schneider-factor by Friedrich & Eifler
2018) assumes the model to be linear in all the parameters and widens
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the contours to encompass the additional noise in the parameter estimates
(Dodelson & Schneider, 2013). We note that as the data-compression greatly
reduces the length of the data vectors, f1 and f2 become close to 1.

To sample the posteriors of our parameters, we generate Monte Carlo
Markov chain (MCMC) samples that map out the posterior space leading
to parameter constraints. To this aim, we use the public software package
EMCEE (Foreman-Mackey et al., 2013), which is an affine-invariant ensem-
ble sampler for MCMC. To test the convergence of our MCMC chains we
adopted the Gelman & Rubin (1992) test.

For the cosmological parameters, we assume a flat ΛCDM cosmology
and vary five parameters: Ωm, σ8, Ωb (the baryonic density in units of the
critical density), ns (the spectral index of primordial density fluctuations)
and h (the dimensionless Hubble parameter). We assume wide flat priors on
Ωm and σ8 and adopt the informative priors in h, ns and Ωb that were used
in the DES Y1 2-point function analysis (see Table 7.1). When constraining
cosmological parameters, we marginalise over nuisance parameters describ-
ing photo-z uncertainties, shear biases and IA effects in our measurements.
The modelling of our nuisance parameters is described in § 7.2.1. As at the
time of finishing this work, the DES Y3 priors were not finalised yet, so we
again assume DES Y1 priors for all the nuisance parameters (priors are sum-
marised in Table 7.1). Photo-z uncertainties are parametrised by a shift in
the mean of the distribution (one for each tomographic bin). Priors for the
shifts come from redshift distributions of a matched sample of galaxies in
the COSMOS survey and angular cross correlation with redMaGiC galaxies
(Hoyle et al., 2018). Multiplicative shear bias priors are described in Zuntz
et al. (2018). We also assume wide flat priors for intrinsic alignment.

Due to the fact that the theory predictions described in § 7.2.1 can
be quite time-consuming to compute due to the large number of cross-
correlations and integrations involved, we further implemented an emulator
(Heitmann et al., 2006; Habib et al., 2007) to speed up the calculations.
In our implementation, the emulator provides fast theoretical predictions
by interpolating over a number of predictions computed at some training
points spanning the parameter space of interest. The speedup stems from
the fact that the time-consuming part of the calculation is substituted by
an interpolation over few training points. The speedup achieved by using
the emulator is of two orders of magnitudes, with a negligible impact on the
accuracy of the theoretical predictions. We note that emulators are often
implemented when N-body simulations are used to model the data vector
(e.g., Knabenhans et al. 2019) due to the impracticability of producing a
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simulation for every point of the parameter space. In our case, even if we do
not directly use any N-body simulation to model the data vector, we take
advantage of the computational speed up provided by the emulation of our
own theoretical model. More details are provided in Appendix C.5.

7.6 Cosmological constraints from mass map

moments

7.6.1 Fiducial scale cuts

The last analysis choice to make before presenting the final cosmological
constraints of the second and third moments of the convergence field is which
scales are to be used for the analysis. The scale cuts we use are determined
based on two tests. First we check that our theoretical modelling is adequate
to describe the data vectors as obtained from the average of many N-body
simulations from T17. Second, we check that the impact of baryons on our
data vector is not significant. We recall that we adopt a strategy to mitigate
baryonic effects which aims at excluding the scales potentially affected by
baryonic feedback, without trying to model such effects. For both tests we
run MCMC chains for different combinations of scale cuts. For the former
test, we use a data vector from T17 simulations; for the latter, we use a
baryons-contaminated data vector (obtained using the outputs of the OWLS
simulation, as explained in § 7.4.3), which should represent a reasonable
upper limit to the magnitude of baryonic feedback effects in real data. We
vary the scales under study and we require the resulting constraints on
cosmological parameters not to be biased against the truth, to check our
modelling is adequate for the range of scales considered.

For a combination of scales to be acceptable, we require the mean of the
marginalised 1-D posterior of Ωm, S8 = σ8(Ωm/0.3)0.5 to be within 0.3 σ of
the values obtained with a “theory” data vector. As we partially constrain
ns, we also require the posterior of ns to be within 0.5 σ of the baseline
value.

We also adopt a second criterion on the χ2 of the best-fit cosmology.
When analysing the data, the best-fit χ2 is used for hypothesis testing and
as a proxy of the adequacy of the data vector modelling. A bad best-fit χ2

implies that either our covariance or the parametrisation of the data vector is
not adequate to describe the measurement. Since we do not model baryonic
effects or the small discrepancies between our theoretical predictions and
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Figure 7.7: The 1-σ marginalised constraints on cosmological parameters for a number
of different scale cuts. In the upper plot, the average of 100 T17 simulations has been
used as the data vector. In the lower plot, the constraints are obtained by using a theory
data vector contaminated with the OWLS AGN power spectrum. Data points represent
the mean of the 1-D marginalised posterior, while for the confidence interval we show
the two-tail symmetric intervals. The vertical dashed lines in the first three columns
represent the input values cosmological parameters. The column ∆χ2 represents the χ2

of the data vector contaminated with baryonic effects or from the average of T17 sims
with respect to a theory data vector. The χ2 best-fit column represents the χ2 of the
best-fitting cosmology from the MCMC chain. The vertical line in the last column marks
the ∆χ2 = 1.6 boundary.
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Figure 7.8: Top panels: residuals (i.e., the difference between the measurement signal in
a FLASK simulation and the simulations mean value) of individual data points in units
of their expected standard deviation for a compressed data vector. We compare to a
Gaussian with zero mean and unit standard deviation. Bottom panels: Distribution
of the χ2 of each realisation of the FLASK simulations, compared to a theoretical χ2

distribution.

the data vector from T17 simulations, we should expect the best-fit χ2 from
the data to be biased. By adopting a criteria on the χ2 of the best-fit
cosmology of the contaminated data vector we make sure the biases from
these two effects are small. In particular, we require the χ2 of the best-fit
cosmology obtained from a contaminated data vector to be within 0.3 of
the expected spread of the χ2 distribution. Therefore, since the length of
the compressed data vector is 15, we require the best-fit χ2 < 1.6. Ideally,
for negligible contamination we expect a best-fit χ2 = 0, as we are using a
theory data vector as a baseline (whereas using a noisy data vector would
give, on average, χ2 ∼ d.o.f. ).

In this section, scale cuts are expressed in terms of a specific comoving
scale R0; the relation with the smoothing scale θ0 is given by θ0 = R0/χ(〈z〉),
where χ(〈z〉) is the comoving distance of the mean redshift of a given to-
mographic bin. In the case of moments from different tomographic bins, we
took the average of the 〈z〉 of the bins.

The tests run on the data vectors obtained from the average of the T17
simulations are shown in the upper plot of Fig. 7.7. As we estimated the bias
in the cosmological parameters induced by the emulator in Appendix C.5,
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we re-scaled the measured data vector by the ratio between an emulated
theory data vector and a non-approximated one predicted at the T17 cos-
mology. This assumes the emulator uncertainties propagate linearly to the
data vector; this is justified as at the T17 cosmology the emulator accuracy
is below the per cent level.

There are different known reasons why the data-vector from the average
of T17 might differ from our theoretical predictions: inaccuracies of the sim-
ulations or in the modelling of the third moments at small scales (§ 7.3 and
§ 7.4.2), inaccuracies in accounting for mask effects (§ 7.4.1), inaccuracies in
the covariance modelling (§ 7.5.1), etc. In the past sections we showed (or
discussed) these differences to be small at the level of the data vector, but
here we want to assess the impact on the cosmological parameters posteriors.

Fig. 7.7 shows the marginalised 1-D posterior for three out of five cosmo-
logical parameters under study. We do not show constraints for Ωb and h100

because the posteriors are heavily prior dominated. For each parameter, we
show the mean of the posterior and the symmetric 1-σ confidence interval.
We note that ns is mildly constrained and its posterior is partially domi-
nated by the prior (which is assumed to be flat with ns ∈ [0.87, 1.07]; see
Table 7.1). The constraints from second moments and from the combination
of second and third moments are close to the input cosmology, and pass our
0.3σ criteria at all scales. We note that the values of Ωm from the third
moments are biased. This is due to the fact that the posterior is strongly
asymmetric. We checked that the posterior of a theory data vector shows
the same level of shifts in the mean value of Ωm for the third moments, and
the difference with respect to the results from the T17 data vector are much
smaller than 0.3σ.

In Fig. 7.7 we show both the difference ∆χ2 of the T17 data vector
and the theory data vector, and the χ2 of the best-fit cosmology. The
former quantity gives a rough idea of the discrepancy of the data vector
with respect to the truth: a variation of ∆χ2 = 1 could, in the worst case
possible, cause a 1-σ shift in the marginalised 1-D posterior of one of the
parameters probed. Usually the difference is absorbed and shared across all
the parameters probed (and this is the case). The values of best fit χ2 for
the T17 data vectors also pass our 0.3σ criteria, being always χ2 < 1.6.

We next test the impact of baryonic effects, by contaminating a theory
data vector with the effects from the OWLS AGN simulation, as described
in § 7.4.3. The results are shown in the lower panel of Fig. 7.7. The impact
on the data vector from baryons is more pronounced than from the T17
data vector, as shown by the larger ∆χ2 values, and it is more important at
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small scales. This translates in a bias in ns at small scales. Second moments
pass our scale cuts criteria starting from 20h−1 Mpc, while the combination
of second and third moments from 24h−1 Mpc. As for the third moments,
they pass our criteria at all the scales probed here (similarly to the T17 data
vector test, the values of the mean of the Ωm posteriors show a negligible
shift with respect to the values obtained using a theory data vector). At
all scales and for the the combinations of second and third moments, our
criteria on the best-fit χ2 is passed.

We note that we performed these tests adopting a FLASK covariance,
which has a slightly different cosmology with respect to the T17 data vector.
This, however, did not significantly bias our posteriors, as shown in the
upper panel of Fig. 7.7.

Based on these tests, we adopt the following fiducial scale cuts: 20h−1

Mpc as a minimum smoothing scale for second moments, 12h−1 Mpc for
third moments, and 24h−1 Mpc when second and third moments are com-
bined. We note that the scale 24h−1 Mpc translates into a cut at ≈ 33 (8)
arcmin for the first (fourth) tomographic bin, while 12h−1 Mpc translates
into a cut at ≈ 16 (4) arcmin for the first (fourth) tomographic bin. As
there is no significant information below twice the pixel size (i.e., < 7 ar-
cmin) and most of the constraining power comes from the two high redshift
tomographic bins, we have not considered scales smaller than 12h−1 Mpc in
the above tests.

With the final scale cuts determined, we perform extra checks on the co-
variance and data vector. We checked that the mean χ2 of the 1000 FLASK
realisations agreed within errors with the number of degree of freedom of our
data vector. The distributions of the measured χ2 are shown in the bottom
panels of Fig. 7.8. We also verified that the distribution of the residuals
(i.e., the difference between the measurement signal in a FLASK simulation
and the simulations mean value) for each entry of our data vector followed
a Gaussian distribution. This is shown in the top panels of Fig. 7.8. We
note that the data-compression algorithm surely helps in giving the com-
pressed data a more Gaussian distribution, due to the central limit theorem
(Heavens et al., 2017).

7.6.2 Simulated likelihood analysis

We simulate a DES Y3 likelihood analysis and show the expected constraints
for DES Y3 in Fig.7.9, for 5 cosmological parameters. All the tests shown in
this section use a theory data vector that includes all the “auto” moments
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Figure 7.9: Cosmological parameter posteriors obtained from the simulated likelihood
analysis. We marginalise over nuisance parameters as explained in §7.5.3. We show con-
straints from second moments, third moments and second and third moments combined,
along with constraints from a shear 2-point correlation function analysis.
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Figure 7.10: Same as Fig. 7.9, but now a zoomed in version of the S8-σ8-Ωm plane.

Table 7.2: DES Y3/Y6 simulated likelihood analysis comparison. Fractional accuracy
(1-σ marginalised posterior confidence intervals over input value) for Ωm, S8 and ns.
DES Y6 constraints are obtained with the expected DES Y6 number density and DES
Y3 scale cuts and tomographic binning.

Ωm S8 ns

2 moments (Y3) 17 % 1.8 % 6.9 %
3 moments (Y3) 66 % 3.6 % 7.9 %

2 + 3 moments (Y3) 10 % 1.5 % 6.5 %
2pt function (Y3) 12 % 1.8 % 6.4 %
2 moments (Y6) 14 % 1.5 % 6.0 %
3 moments (Y6) 48 % 2.8% 7.9 %

2 + 3 moments (Y6) 8 % 1.4 % 5.7 %
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Table 7.3: DES Y3/Y6 simulated likelihood analysis comparison. We show the ratio be-
tween the 1-σ marginalised posterior confidence intervals for Ωm, S8 and ns for a number
of cases (a value of < 1 indicates improvement). DES Y6 contraints are obtained with
the expected DES Y6 number density and the same DES Y3 scale cuts and tomographic
binning.

Ωm S8 ns
(ratio) (ratio) (ratio)

2 (Y3) → 2 + 3 (Y3) 0.57 0.79 0.97
2 (Y6) → 2 + 3 (Y6) 0.58 0.89 1.01

2 (Y3) → 2 (Y6) 0.85 0.86 0.83
3 (Y3) → 3 (Y6) 0.78 0.80 0.99

2 + 3 (Y3) → 2 + 3 (Y6) 0.87 0.97 0.89

of different tomographic bins (e.g.,[1,1],[1,1,1],[2,2],[2,2,2]) and the “cross”
moments (e.g.,[1,2],[1,1,2],[1,2,2]), for a total of 10 combinations for second
moments and 20 combinations for third moments. The fiducial scale cuts
determined in the previous section have been adopted (20h−1 Mpc for second
moments, 12h−1 Mpc for third moments, and 24h−1 Mpc when second and
third moments are combined). For the data vector, a fiducial T17 cosmology
is assumed, with nuisance and astrophysical parameters (photo-z biases,
multiplicative shear biases, intrinsic alignment IA) assumed to be null, and
no baryonic contamination. We adopted the FLASK covariance described in
§ 7.5.1, and compressed our data vector following § 7.5.2. When estimating
parameters posterior, we further marginalise over nuisance parameters as
explained in § 7.2.1.

As we commented in the previous section, second and third moments
mostly constrain Ωm and σ8, while ns is partially affected by the prior
and h100 and Ωb are prior dominated. In general, third moments are less
constraining than second moments; however, they contain additional non-
Gaussian information and they have a slightly different degeneration axis
in the Ωm-σ8 plane compared to second moments. This helps breaking the
degeneracy when the two are combined, delivering tighter constraints. This
is also shown in Fig.7.10, where we show results in the Ωm-S8 plane.

We report in Table 7.2 the constraining power of moments for Ωm, S8 and
ns; the level of improvement when the moments are combined (quantified
as the ratio between predicted confidence intervals) is reported in Table 7.3.
Second, third moments and their combination constrain Ωm to 17 per cent,
66 per cent and 10 per cent respectively, and S8 to 1.8 per cent, 3.6 per
cent and 1.5 per cent respectively. These particular values are obtained
specifically for DES Y3 and depend on the particular scales and the noise
properties of the sample considered.
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We also show in Table 7.3 how much we expect to improve our con-
straints when moving to the final DES release, which will include all the
data from the six years (Y6) of observations. This is quantified in terms
of the ratio between predicted confidence intervals. The values have been
obtained by assuming the expected DES Y6 number density (which should
roughly double DES Y3 one) and the same DES Y3 scale cuts and tomo-
graphic binning. We did not take into account the possibility of having
more than four tomographic bins, which would be possible having a deeper
sample. In general, we can expect to further improve our constraints by
10− 20 per cent with respect to DES Y3.

We overlay in Figs. 7.9, 7.10 the expected posteriors from the DES Y3
shear 2-point correlation function analysis. Scale cuts for the 2pt correlation
function analysis have been chosen by contaminating a shear 2-point data
vector with the effect of baryons and looking at the bias in the parameters’
posteriors, in a fashion similar to what has been done in § 7.6.1. The
measurement covariance has been obtained using jackknife resampling and a
fiducial DES Y3 simulation (DeRose et al., 2019). The shear 2-point analysis
delivers slightly tighter posteriors than second moments alone, but is less
constraining than the combination of second and third moments. Indeed, we
find it to constrain Ωm and S8 at the level of 12 per cent and 1.8 per cent; the
combined second and third moments result is 20 per cent more constraining.
Without measuring the cross-covariance between moments and shear 2-point
correlation function, it is hard to quantitatively explain why the latter is
more constraining than second moments alone. One reason could be that
they have access to the same information (the power spectrum), but they
probe scales differently (the 2pt correlation function is more localised in
harmonic space, whereas moments get contributions from a broader range
of multipoles, being prone to baryonic effects at all smoothing scales). A
different sensitivity to the effects that drive the scale selection can limit
the constraining power of a probe compared to others (see, e.g., Asgari
et al. 2019b). More in general, a different sensitivity to angular scales might
cause different observables to be only weakly correlated, even if they belong
to the same category of 2-point statistics (see, e.g. Hamana et al. 2019).
Future works will investigate further the correlation between 2pt correlation
function and second and third moments.

One relevant feature that can be observed from Fig. 7.9 and Fig. 7.10,
is that shear 2-point correlation function has a similar degeneracy direction
compared to second moments only. Combining shear 2-point correlation
function with any other probes sensitive to the bispectrum (such as the

209



7.7. SUMMARY CHAPTER 7. COS-
MOLOGY WITH MASS

MAP MOMENTS

third moments) is likely to significantly improve the constraints due to the
different degeneracy direction of their constraints.

7.7 Summary

In this Chapter, we have presented a simulated cosmology analysis using the
second and third moments of the weak lensing mass (convergence) maps.
We targeted the analysis at the third year (Y3) data from the Dark En-
ergy Survey (DES), but the methods developed here are general and can be
applied to other datasets. The goal of this Chapter was to describe and val-
idate the methodology using simulations, determining the lower bounds on
scales where systematic or modelling uncertainties are not expected to affect
the cosmological analysis. A future analysis, applying the methodology to
DES Y3 data, together with observational systematic checks (e.g. poten-
tial systematic effects such as modelling errors in the point spread function,
inhomogeneities in the noise, and spurious dependencies of shear with ob-
serving conditions) and consistency checks with the results from other DES
Y3 probes and external datasets, will follow.

The second moment of the convergence as a function of smoothing scale
contains similar information as the standard two-point shear correlations.
The third moment, or the skewness, contains additional non-Gaussian infor-
mation of the field. We described how the convergence maps are constructed
starting from the shear catalogue using a full-sky Kaiser-Squires (Kaiser &
Squires, 1993a; Chang et al., 2018) formalism. We obtain analytical pre-
dictions for the second and third moments using perturbation theory. We
included the effects of partial sky coverage in the theoretical modelling of
the moments using the pseudo-C` formalism. We validated the modelling
of the convergence moments using a large suite of simulations, including
the effects of the survey mask and non-linear lensing corrections (such as
reduced-shear and source crowding). We used the same simulations to es-
timate the covariance. We furthermore showed how the computation of
theoretical predictions can be sped up without introducing biases in the
cosmological analysis by implementing a 5-parameter emulator.

We tested our pipeline through simulated likelihood analyses varying five
cosmological parameters (Ωm, σ8, ns, Ωb, h100) and 10 nuisance parameters
(modelling redshift uncertainties, shear biases, and intrinsic alignments).
We determined the scale cuts based on the impact of baryonic physics and
modelling inaccuracies of the third moments at small scales.
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We then simulated the constraints achievable with a DES Y3 analysis.
We found that second moments, third moments, and their combination con-
strain Ωm to 17 per cent, 66 per cent and 10 per cent respectively, and S8

to 1.8 per cent, 3.6 per cent and 1.5 per cent respectively. The combination
of second and third moments provides improved constraints with respect to
second moments due to the extra non-Gaussian information probed by the
third moments and the different inclination of the degeneracy axis in the
σ8-Ωm plane of the two probes. For DES Y6, where we expect to have a
data set with higher galaxy density, we forecast a further improvement in
the constraining power at the level of 10-20 per cent.

We also compared with a simulated shear 2-point analysis for DES Y3,
which yields constraints at the level of 12 per cent and 1.8 per cent for Ωm

and S8. The combined second and third moments result is about 20 per
cent more constraining. This analysis shows the importance of including in
the analysis probes of higher order statistics to improve the cosmological
constraints.
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Summary and conclusions

In this thesis we have addressed some key aspects of gravitational weak
lensing in the context of photometric surveys. In particular, we used sim-
ulations and data taken during the first three years of observations of the
Dark Energy Survey (DES Y3). DES is scheduled to release their main DES
Y3 cosmological analysis later this year, and this thesis covers some parts
of the analysis.

In Part II of this thesis, we have focused on the “clustering-redshift”
technique and its role in the main DES Y3 redshift calibration strategy.
Clustering-redshift is a method to obtain (or calibrate) redshift distributions
which is based on cross-correlations with samples with secure redshifts. Two
different variants of the technique have been presented, where the cluster-
ing information is used to calibrate the redshift distributions from the DES
Y3 fiducial photo−z method (SOMPZ). The methodology has been com-
pletely characterised in simulations, and then applied to DES Y3 data. We
found that the current implementation of clustering-redshift is limited by
the lack of modelling of the redshift evolution of the galaxy-matter bias of
the DES Y3 weak lensing sample. We found that for DES Y3 the clustering
information does not help tightening the uncertainty on the mean of the
redshift distributions, but it does significantly tighten the scatter on the
shape. We further discussed future perspectives of the methodology at the
end of Chapter 4.

Part III was devoted to the testing of the official DES Y3 shape cat-
alogue, covering ∼ 4143 deg2 of the southern hemisphere and comprising
∼ 100 million objects, which effectively makes it the largest shape catalogue
ever created. We gave an overview of the shape measurement pipeline, de-
scribing the improvements with respect to previous versions, and discussed
the sample selection adopted for the DES Y3 cosmological analysis. We
then performed a variety of empirical null tests, mostly aimed at identifying
additive biases in our shape catalogue. Among them, we tested potential
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systematic errors connected to PSF corrections and to PSF chromatic ef-
fects, we checked whether we detected spurious B-mode signals, and looked
at dependencies of the mean shear with respect to a number of galaxy or
survey properties. In the majority of the null tests we did not detect any
statistically significant signal, and in the cases were we did, we checked they
were not significantly affecting our cosmic shear analysis. In the last part of
the thesis (Chapter 6 & 7), we presented the official DES Y3 blinded weak
lensing mass maps, and discussed a potential cosmological application of the
maps. In particular, we introduced in Chapter 6 four different mass map
reconstruction techniques, each of them assuming different priors on the
recovered convergence field. The different methods have been compared in
simulations using a number of different summary statistics. The tests per-
formed suggested that using priors to recover the converge field from a noisy
realisation of the shear field generally improves the reconstruction, i.e., the
recovered maps are more similar to the true convergence field. As a down-
side, we also showed how the choice of the prior can make the comparison
of certain statistics with theoretical predictions particularly complex, and
gave recommendations on how to choose the mass map method depending
on the particular science application. We then presented the official DES
Y3 blinded mass maps, obtained with the four different methods, and as-
sessed their robustness against a number of systematic maps representing
catalogue properties and observing conditions.

Chapter 7 presented a simulated cosmology analysis using the second
and third moments of the weak lensing mass maps, targeted at the DES Y3
data. The second moment of the convergence as a function of smoothing
scale contains similar information to the standard two-point shear corre-
lations, whereas the third moment, or skewness, contains additional non-
Gaussian information of the field. We showed how to obtain analytical
predictions for the second and third moments using perturbation theory.
We tested our pipeline through a simulated likelihood analyses varying 5
cosmological parameters and 10 nuisance parameters and we identified the
scales where systematic or modelling uncertainties are not expected to af-
fect the cosmological analysis. Our simulated likelihood analysis showed
that the combination of second and third moments provides a 1.5 percent
constraint on S8 ≡ σ8(Ωm/0.3)0.5 for DES Y3 data, 20 percent better than
an analysis using a simulated DES Y3 shear 2-point statistics, owing to the
non-Gaussian information captured by the inclusion of higher-order statis-
tics. Subsequent works will apply the methodology developed in this part
of the thesis to the DES Y3 data.
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Appendix A

A.1 Individual mean-matching likelihoods

We show in this Appendix the posteriors of the mean of the SOMPZ realisa-
tion obtained with the mean matching method when using the two reference
samples individually. We show both the results obtained in simulations and
in data.

In particular, Fig. A.1 shows the mean redshift posteriors of the SOMPZ
realisations obtained in simulations. To facilitate the comparison with the
clustering only prior, we computed the mean in the 2-σ interval of the ref-
erence sample used. The first thing that can be noted is that the clustering
prior is consistent - within uncertainties - with the mean of the SOMPZ re-
alisations before combining the two pieces of information. The other thing
that can be noted is that the histograms clearly show that the clustering
prior is much wider than the scatter of the SOMPZ realisations, especially
for the low redshift tomographic bins, which explains why the mean match-
ing clustering likelihood does not help much tightening the posterior. Last,
we note that the final scatter on the mean of the SOMPZ realisations is
larger than what is shown in Fig. A.1, as it gets contributions from the
redshift range where there is no clustering information.

Fig. A.2 shows the mean redshift posteriors of the SOMPZ realisations
obtained on data, along with the WZ prior. The results are qualitatively and
quantitatively very similar to what has been obtained in simulations: the
clustering prior and SOMPZ realisations are consistent within errors before
combining, and the mean matching clustering likelihood does not help much
tightening the mean redshift posterior of the SOMPZ realisations.
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Figure A.1: Mean redshift posteriors for the 4 tomographic bins obtained using the mean
matching method. The top panels show the results obtained using the redMaGiC sample
only, the lower panels show the results obtained using the BOSS/eBOSS sample only. Red
histograms represent the distribution of the mean redshift of the SOMPZ realisations,
while the purple histograms represent the clusttering only prior. Light-blue histograms
show the mean redshift posteriors of the SOMPZ realisations using the clustering likeli-
hood. To facilitate the comparison with the clustering prior, the mean redshift has been
computed in the fiducial 2-σ interval, i.e., excluding the tails of the redshift distributions.
The black vertical lines represent the true mean redshift as computed in simulations.
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Figure A.2: Same as Fig. A.1, but now on data.
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AND ANALYTICAL
MARGINALISATION

APPENDIX A.

A.2 Full ŵur model and analytical marginal-

isation

We provide here more details about the implementation of the shape-matching
method. The method uses the cross-correlation information to constrain
the redshift distributions {npz,k

u (zi)} provided by a given photo-z code (in
this case, these are a number of realisations provided by SOMPZ). The
method evaluates the likelihood that the data wur(zi) arose from any pro-
posed {npz,k

u (zi)}, along with a slew of other relevant parameters. As for
the model, we extend the model described by Eq. 4.14 so as to incorporate
systematic uncertainties:

wur(zi) = Sys (zi, {sk})nu(zi)br(zi)wDM(zi)+

br(zi)αu(zi)
∑
j>i

[Dijnu(zj)] + b̄uαr(zi)nu(zi)
∑
j>i

Dij. (A.1)

The function Sys (zi, {sk}) varies smoothly with redshift and accounts for
the three systematics described in § 4.4.2 (method systematic, bias evolution
of the weak lensing sample, uncertainties in the redshifts of the reference
sample). Since the systematic functions model the redshift evolution of the
bias of the unknown sample, we removed the term bu(zi) from the clustering
term. Nonetheless, we kept a redshift averaged nuisance parameter b̄u in
the magnification term. We note that we did not multiply the magnification
terms by the systematic function: despite the fact that the magnification
terms are not immune to the above systematics, we assumed that it was
not necessary to further modelling those, as the αr, αu and b̄u parameters
provide enough flexibility to the model. The Sys (zi, {sk}) function is given
by:

log[Sys (zi, {sk})] =
∑
k<M

skPk(zi), (A.2)

with Pk(zi) the kth Legendre polynomial, after remapping the redshift ar-
gument into the interval (-1,1), and M the maximum order considered. We
found that M = 6 describes with good accuracy the systematics in Buzzard.
We then proceed to linearise the systematic function, Taylor expanding it:

Sys (zi, {sk}) ≈ Sys (zi, {sk,0})+
∂Sys (zi, {sk})

∂{sk}

∣∣∣∣
{sk,0}

({sk} − {sk,0}) (A.3)
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We can then write:

wur(zi)− ŵur(zi) = ∆wur(zi)− A(zi)x, (A.4)

where ŵur(zi) is the estimated clustering signal from data. In the above
equation, x is a vector made of all the nuisance parameters we wish to
marginalise over ({sk}, αr, αu and b̄u), A(zi) is the local gradient from
the x parameters to the model ∆wur(zi), and ∆wur(zi) is the difference
between the observed cross-correlations and the model evaluated for some
fiducial value of the nuisance parameters.

∆wur(zi) ≡ wur(zi)−[
Sys (zi, {sk,0}) +

∂Sys (zi, {sk})
∂{sk}

∣∣∣∣
{sk,0}

{sk,0}

]
×

nu(zi)br(zi)wDM(zi)+

br(zi)αu,0(zi)
∑
j>i

[Dijnu(zj)] + b̄u,0αr,0(zi)nu,0(zi)
∑
j>i

Dij. (A.5)

If we assume the nuisance parameters we want to marginalise over to have
a Gaussian prior x ∼ N (µ,Cx) , we can write the full likelihood as follows:

LWZ = |2πΣ̂wz|−1/2|2πΣ̂x|−1/2×∫
dx exp

[
−1

2
(∆wur − Ax)T Σ̂−1

wz (∆wur − Ax)

]
×

exp

[
−1

2
(x− µx)T Σ̂−1

x + (x− µx)

]
, (A.6)

LWZ ∝
[
AT Σ̂−1

wzA+ Σ̂−1
x

]
×

exp

[
1

2
(∆wur − Ax)T (Σ̂wz + AΣ̂xA

T )−1(∆wur − Ax)

]
(A.7)

In practice, we note that we cannot marginalise over the parameters αr,
as they are marginalised over in the main cosmological analysis. Instead, we
fix them to some fiducial values, and we show the impact on the likelihood
of varying them by a reasonable amount ∆αr (§ 4.4.2).
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Appendix B

B.1 The shear two-point METACALIBRA-

TION Response

We derive in this Appendix the response for the shear two-point correla-
tion function, following Sheldon & Huff 2017. We can write the two-point
correlation function as follows

ξ =

∫
deαdeβSαSβP (eα, eβ)eαeβ (B.1)

where Sα and Sβ are selection functions, and P (eα, eβ) the joint probabil-
ity distribution of eα and eβ. In the DES Y1 analysis, we assumed that
the shapes of galaxies were not correlated in the absence of lensing, i.e.
P (eα, eβ)|γ=0 = P (eα)|γ=0 P (eβ)|γ=0. Under this hypothesis, the response
of the shear two point function is equal to the mean response squared:
〈R2pt〉 ≈ 〈R〉2 (also assuming the response matrix is diagonal). In what
follows we drop the assumption of zero correlation in absence of lensing.
The response at leading order can be written as:

〈R2pt〉 =

∫
deαdeβ

∂2 (SαSβP (eα, eβ)eαeβ)

∂γα∂γβ
(B.2)

〈R2pt〉 =

∫
deαdeβ

∂

∂γα
Sα×[

P (eα, eβ)eαeβ
∂Sβ
∂γβ

+ Sβeα
∂(P (eα, eβ)eβ)

∂γβ

]
(B.3)
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〈R2pt〉 =

∫
deαdeβ

[
P (eα, eβ)eαeβ

∂Sα
∂γα

∂Sβ
∂γβ

]
+∫

deαdeβ

[
Sαeβ

∂(P (eα, eβ)eα)

∂γα

∂Sβ
∂γβ

]
+∫

deαdeβ

[
Sβeα

∂(P (eα, eβ)eβ)

∂γβ

∂Sα
∂γα

]
+∫

deαdeβ

{
SαSβ

∂

δγα

[
eα
∂(P (eα, eβ)eβ)

∂γβ

]}
(B.4)

For the first term of Eq. B.4:

∫
deαdeβ

[
P (eα, eβ)eαeβ

(S+
α − S−α )

∆γ

(
S+
β − S

−
β

)
∆γ

]
=

1

(∆γ)2

[
ξ++(α, β)− ξ−+(α, β)− ξ+−(α, β) + ξ−−(α, β)

]
(B.5)

where derivatives have been approximated using finite differences. The no-
tation ξ−+(α, β) indicates that the shear two-point correlation function has
been computed applying the negatively sheared selection on the sample α
and the positively sheared selection on the sample β.

The second term of Eq. B.4 reads:

∫
deαdeβ

[
Sαeβ

(P (eα
+, eβ)eα

+ − P (eα
−, eβ)eα

−)

∆γ

(
S+
β − S

−
β

)
∆γ

]
=

1

(∆γ)2

[
ξ0+(α+, β)− ξ0−(α+, β)− ξ0+(α−, β) + ξ0−(α−, β)

]
(B.6)

where the notation ξ0−(α+, β) indicates that the shear two-point correlation
function has been computed applying the normal selection to the positively
sheared sample α, and applying the negatively sheared selection to the sam-
ple β.

The third term of Eq. B.4 reads:
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∫
deαdeβ

[
Sβeα

(P (eα, eβ
+)eβ

+ − P (eα, eβ
−)eβ

−)

∆γ

(S+
α − S−α )

∆γ

]
=

1

(∆γ)2

[
ξ+0(α, β+)− ξ−0(α, β+)− ξ+0(α, β−) + ξ−0(α, β−)

]
(B.7)

Lastly, the fourth term of Eq. B.4 is:

∫
deαdeβ

{
SβSα

∂

∂γα

[
eα

(P (eα, eβ
+)eβ

+ − P (eα, eβ
−)eβ

−)

∆γ

]}
=∫

deαdeβSβSα

[
(P (eα

+, eβ
+)eα

+eβ
+ − P (eα

−, eβ
+)eα

−eβ
+)

(∆γ)2

]
+

−
∫
deαdeβSβSα

[
(P (eα

+, eβ
−)eα

+eβ
− + P (eα

−, eβ
−)eα

−eβ
−)

(∆γ)2

]
=

1

(∆γ)2

[
ξ00(α+, β+)− ξ00(α−, β+)− ξ00(α+, β−) + ξ00(α−, β−)

]
(B.8)

Putting together Eq. B.5, B.6, B.7 and B.8:

〈R2pt〉 =
1

(∆γ)2

[
ξ++(α, β)− ξ−+(α, β)− ξ+−(α, β) + ξ−−(α, β)

]
+

1

(∆γ)2

[
ξ0+(α+, β)− ξ0−(α+, β)− ξ0+(α−, β) + ξ0−(α−, β)

]
+

1

(∆γ)2

[
ξ+0(α, β+)− ξ−0(α, β+)− ξ+0(α, β−) + ξ−0(α, β−)

]
+

1

(∆γ)2

[
ξ00(α+, β+)− ξ00(α−, β+)− ξ00(α+, β−) + ξ00(α−, β−)

]
. (B.9)

Ideally, the response would need to be computed shearing et or e×. These
are the tangential and cross components of the shear along the line connect-
ing two galaxies. We cannot do this because the shear would depend on
the pair of galaxies considered. We can just shear e1 and e2 (which are the
tangential and cross components along two arbitrary fixed axes). Let us
define:

〈R2pt
tt,tt〉 =

∫
deα,tdeβ,t

∂2 (SαSβP (eα,t, eβ,t)eα,teβ,t)

∂γα,t∂γβ,t
(B.10)
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Analogously we can define 〈R2pt
××,××〉. Under the hypothesis of isotropy,

〈R2pt
××,××〉 = 〈R2pt

tt,tt〉 ≡ 〈R2pt〉, which would be the response needed to correct
ξ+ and ξ−. However, these two responses are not directly accessible. Using
Eq. B.9 and shearing e1 and e2, the estimator 〈R̂2pt〉 we can measure from
the data is:

〈R̂2pt〉 = 〈R2pt
tt,11〉+ 2〈R2pt

tt,12〉+ 〈R2pt
tt,22〉±(
〈R2pt
××,11〉+ 2〈R2pt

××,12〉+ 〈R2pt
××,22〉

)
(B.11)

where now the derivatives are with respect to e1 and e2. The ± depends
on whether we chose ξ+ or ξ− as statistics to infer the response. Changing
variables, Eq. B.11 becomes:

〈R̂2pt〉 = 〈R2pt〉

[
〈
(
∂γt
∂e1

)2

〉+ 2〈∂γt
∂e1

∂γt
∂e2

〉+ 〈
(
∂γt
∂e2

)2

〉

]
±

〈R2pt〉

[
〈
(
∂γ×
∂e1

)2

〉+ 2〈∂γ×
∂e1

∂γ×
∂e2

〉+ 〈
(
∂γ×
∂e2

)2

〉

]
(B.12)

γt and γ× are related to e1 and e2 by a rotation matrix; we can assume for
instance

∂γt
∂e1

= cosφ
∂γt
∂e2

= −sinφ
∂γ×
∂e1

= sinφ
∂γ×
∂e2

= cosφ (B.13)

Eq. B.12 leads to

〈R̂2pt〉 = 〈R2pt〉
[
〈cos2φ〉+ 〈cosφsinφ〉+ 〈sin2φ〉

]
±

〈R2pt〉
[
〈sin2φ〉+ 〈cosφsinφ〉+ 〈cos2φ〉

]
= 〈R2pt〉 ± 〈R2pt〉 (B.14)

Fig. B.1 shows the response obtained from Eq. B.14. We sheared e1

and e2 separately so as to better compare with the standard procedure
implemented in the DES Y1 analysis. The shear two-point measurement
has been computed in 20 bins from 2.5 to 250 arcminutes. Error bars were
obtained from 100 jackknives. We note that the values obtained from e1 and
e2 separately show differences of the order of ∼ 0.4 per cent on 〈R2pt〉. This
corresponds to a difference of ∼ 0.2 per cent on 〈R〉, indicating that the
hypothesis of isotropy holds down to a 0.2 per cent level. The two diagonal
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Figure B.1: Left: response inferred using ξ+ (Eq. B.14, represented by the lines in plot)
compared with the standard mean response squared used in the DES Y1 analysis to
calibrate the shear two-point statistics (horizontal bands). Right: Response inferred
using ξ− (Eq. B.14). If the hypothesis of isotropy holds, this should be compatible with
0.

components of the response matrix are expected to be identical if there was
no preferred direction in the measurement process. In practice, this is not
true, due to PSF anisotropies or mask effects with distinct orientation with
respect to the two shear axes (as found by Sheldon & Huff 2017). We do not
expect this level of bias to impact the DES Y3 analysis, and its amplitude is
within the overall calibration error budget from the image simulations. We
also note that in the fiducial methodology for the DES Y1 and Y3 analyses
the responses from the two components are averaged, which should mitigate
this effect (see below).

Fig. B.1 also shows the comparison with the mean response implemented
in DES Y1 (〈R〉2). The responses obtained with the two methods are in
good agreement within errors for most of the angular scales probed here,
except at large scales, where a small difference is measured. This large-scale
discrepancy is expected to have a negligible impact for the DES Y3 analysis,
given its amplitude. Such difference might be explained by the large-scale
pattern of the response across the DES Y3 footprint (Fig. B.2). This pattern
cannot be captured by the mean response correction implemented in the
DES Y1 analysis, since the the mean response is computed over the full
sample, losing any spatial/angular information. The presence of a pattern
in the mean response is not unexpected and can be caused by a variety of
factors: e.g., the mean response is expected to be correlated with imaging
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Figure B.2: Weighted mean response across the survey footprint.

depth.

Finally, the right panel of Fig. B.1 tests our assumption of isotropy made
before Eq. B.11: if isotropy holds for e1 and e2, it is not possible to estimate
the response using ξ−, since in Eq. B.14 the two terms cancel out. The
response obtained for the two components separately are not compatible
with zero. This again suggests that the assumption of isotropy is good
only at the sub-percentage level with respect to the response computed
with ξ+, in quantitative agreement with the results shown in the left panel
of Fig. B.1. The signal vanishes when the two components are averaged,
effectively erasing the bias in the estimate of the response.

B.2 Color based Star-Galaxy Separation

We made use of the star-galaxy separation at faint magnitudes using the
DECam observations in ugriz made as part of the DES deep fields, com-
bined with JHKs bands as observed by the UltraVISTA survey, as detailed
in (Hartley et al., 2020b, in particular Section 8). This star galaxy sepa-
ration uses colors as features for supervised machine learning classification.
The training set for the classification comes from the HST-ACS mu class
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Figure B.3: Objects as separated by the kNN classifier. Blue boxes represent objects
identified as galaxies; red boxes stars. The individual points in the right panel are all the
individual points. Left shows the color distributions for all matched objects in the DES
deep fields C3, E2 and X3, right shows color distributions for objects in this set which
pass the fiducial cuts and make it into the shape catalogue.

available within the COSMOS field (Leauthaud et al., 2007). mu class
uses both HST-ACS color and morpholology information together. In par-
ticular, we chose the Nearest Neighbors (kNN) star-galaxy classification,
as it is shown to have the best performance in terms of stellar purity, and
therefore is appropriate for assessing the contamination of stars in the shape
catalogue.

The color-color plots in Fig. B.3 show the results of this classifier when
applied to all objects in the DES catalogues in the Deep Fields C3, X3 and
E2 regions for which both ugrizJHK colors and metacalibration shape
measurements are available. As can be seen, the color-based classification
of shape catalogue objects (which are not selected by color) shows a small
fraction of contaminating objects which have colors highly consistent with
those of the stellar population. Fig. B.4 also shows the i band magnitudes
of the objects in the C3, X3 and E2 regions, as classified by the color-based
kNN method.
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Figure B.4: i band magnitude distributions for objects as separated by the kNN classifier
in the DES deep fields C3, E2 and X3.
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Appendix C

C.1 Skewness parameter

In perturbation theory, the Fourier space equations of motion for the matter
density contrast δ and the divergence of the velocity field θ = ∇v are
(Bernardeau et al., 2002):

∂δ(k, τ)

∂τ
+ θ(k, τ) =

−
∫

d3k1d3k2δD(k− k12), α(k1,k2)δ(k1, τ)θ(k2, τ) ≡ α[δ, θ,k], (C.1)

∂θ(k, τ)

∂τ
+Hθ(k, τ) +

3ΩmH
2
0

2a
δ(k, τ) =

−
∫

d3k1d3k2δD(k− k12), β(k1,k2)θ(k1, τ)θ(k2, τ) ≡ β[δ, θ,k], (C.2)

with τ being the conformal time, a the scale factor, H = d
dτ

ln a, k12 = k1+k2

and α and β defined by:

α(k1,k2) = 1 +
1

2

k1k2

k1k2

(
k1

k2

+
k2

k1

), (C.3)

β(k1,k2) =
1

2

k1k2

k1k2

(
k1

k2

+
k2

k1

) +
(k1k2)2

k2
1k

2
2

. (C.4)

The matter density contrast and the divergence of the velocity field can
be expanded as:
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Figure C.1: Comparison between measured third moments in T17 simulations (red line)
and theoretical predictions using different modelling choices for the small scales regime:
SC01 fitting formulae (black points), GM12 fitting formulae (green points) and the per-
turbation theory prediction obtained using the non linear power spectrum (NL, blue
points). The red shaded region correspond to the 1-σ uncertainty of the measurement.
The grey shaded regions indicate the angular scales excluded in the main cosmological
analysis when combining with second moments (i.e., a 24h−1 Mpc scale cut).

δ(k, τ) =
∑
n=1

δn(k, τ), (C.5)

θ(k, τ) = −∂lnD+(τ)

∂τ

∑
n=1

θn(k, τ), (C.6)

where n indicates the order at which the fields are approximated and D+ is
the linear growth factor. At linear order, δ1(k, τ) = θ1(k, τ) = D+(τ)δ1(k).

At second order the Fourier equations of motion are solved by:

δ2(k, τ) = D2
+(τ)α[δ1, δ1,k] +D2(τ)(β[δ1, δ1,k]− α[δ1, δ1,k]), (C.7)

with D2 the solution of the following differential equation:

∂2D2(τ)

∂2τ
+H

2(τ)

∂τ
− 3ΩmH

2
0

2a
D2(τ) = (

∂D+(τ)

∂τ
)2 (C.8)

Lastly, we define the following quantity µ, as it will enter in the modeling
of the third moment:

µ ≡ 1−D2/D
2
+. (C.9)
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Figure C.2: Left panel: forecast posteriors obtained assuming three different theory data
vectors using different modelling choices for the third moments small scales (the SC01
and GM12 models and the simple non linear theory prediction). The three data vectors
have been analysed assuming as true model the SC01 model. The data vectors include
second and third moments and assume the fiducial scale cut (i.e., a 24h−1 Mpc scale cut).
Right panel: same as left panel, but assuming a large scale cut (50h−1 Mpc) for third
moments. Bottom panel: comparison between forecast posteriors obtained assuming a
theory data vector, a fiducial scale cut (24h−1 Mpc) and including (or not including)
third moments modelling uncertainties in the covariance.
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At leading order in perturbation theory, one can compute the variance
of the dark matter density field smoothed by a top hat filter as:

〈δ2
θ0,lin
〉(τ) =

1

2π

∫
dkkW (k, θ0)2Plin(k, τ); (C.10)

while the skewness will be described by the following equation:

〈δ3
θ0,lin
〉(τ) =

6

(2π)3

∫
d2k1d2k2W (k1, θ0)W (k2, θ0)W (k1 + k2, θ0)

× Plin(k1, τ), Plin(k2, τ)F2(k1,k2, τ), (C.11)

where Plin(k, τ) is the linear power spectrum and W (k, θ0) is the top hat
filter described in Eq. 7.1. The term F2(k1,k2, τ) reads:

F2(k1,k2, τ) =
1

2
[(1+

k1

k2

cosφ)+(1+
k2

k1

cosφ)]+[1−µ(τ)](cos2φ−1), (C.12)

with φ the angle between k1 and k2. We implement here a refinement of the
term F2 based on N-body simulations (while Eq. C.12 has been obtained, so
far, exclusively relying on perturbation theory). The refinement we are im-
plementing here has been first obtained by Scoccimarro & Couchman (2001)
(SC01) and later on by Gil-Maŕın et al. (2012) (GM12) fitting an analyti-
cal formula to the non-linear evolution of the bispectrum based on a suite
of cold dark matter N-body simulations. Implementing such corrections,
Eq. C.12 becomes:

F2(k1,k2, τ) =
1

2
b1b2[(1 +

k1

k2

cosφ) + (1 +
k2

k1

cosφ)]

+ [1− µ(τ)]c1c2(cos2φ− 1) + [a1a2µ(τ)− b1b2 + [1− µ(τ)]c1c2]. (C.13)

The terms a, b, c are taken from Gil-Maŕın et al. (2012); their subscripts in
the above equations indicate if they refer to k1 or k2. In particular:

a(n, k, τ) =
1 + (σ8D+)a6 [0.7(4− 2n)/(1 + 22n+1)]1/2(qa1)n+a2

1 + (qa1)n+a2
, (C.14)

b(n, k, τ) =
1 + 0.2a3(n+ 3)(qa7)n+3+a8

1 + (qa7)n+3.5+a8
, (C.15)

c(n, k, τ) =
1 + 4.5a4/[1.5 + (n+ 3)4(qa5)n+3+a9

1 + (qa5)n+3.5+a9
. (C.16)
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In the above equations, n is the slope of the linear power spectrum at scale
k and q ≡ k/kNL, where kNL is the scale where non-linearities start to be
important and it is defined so that k3

NLP (k, τ)/2π2 = 1. We report in ta-
ble C.1 the values of the coefficients a1, ..., a9 as from Scoccimarro & Couch-
man (2001) and Gil-Maŕın et al. (2012). Implementing these corrections in
Eq. C.11 leads to:

〈δ3
θ0,lin
〉(τ) =

6

(4π2)

∫
dk1dk2W (k1, θ0)W (k2, θ0)

× Plin(k1, τ), Plin(k2, τ)

∫
dφW (

√
k2

1 + k2
2 + 2k1k2cosφ, θ0)

× F2(k1, k2, φ, τ). (C.17)

The integral on the angle φ can be written as:

∫
dφW (

√
k2

1 + k2
2 + 2k1k2cosφ, θ0)F2(k1, k2, φ, τ)

=
1

2
b1b2

∫
dφW (

√
k2

1 + k2
2 + 2k1k2cosφ, θ0)[2 + (

k1

k2

+
k2

k1

)cosφ]

+

∫
dφW (

√
k2

1 + k2
2 + 2k1k2cosφ, θ0)[(1− µ)c1c2(cos2φ− 1)]

+

∫
dφW (

√
k2

1 + k2
2 + 2k1k2cosφ, θ0)[a1a2µ− b1b2 + (1− µ)c1c2]. (C.18)

For brevity, we omitted the dependence on τ in µ. The three integrals in
Eq. C.18 can be solved as:

b1b2[2πW (k1, θ0)W (k2, θ0) +
π

2

∂

∂θ0

(W (k1, θ0)W (k2, θ0))]

− c1c2[π(1− µ)W (k1, θ0)W (k2, θ0)]

+ 2π[a1a2µ− b1b2 + (1− µ)c1c2]W (k1, θ0)W (k2, θ0) =

π

2
b1b2

∂

∂θ0

[W (k1, θ0)W (k2, θ0)]

+ π[2a1a2 − (1− µ)c1c2]W (k1, θ0)W (k2, θ0). (C.19)
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After some algebra, one can express Eq. C.17 as:

〈δ3
θ0,lin
〉(τ) = 6

[∫
dkkW (k, θ0)2Plin(k, τ)

]2

− 3

[∫
dkk(1− µ)cW (k, θ0)2Plin(k, τ)

]2

+
3

4

∂

∂lnθ0

[∫
dkkbW (k, θ0)2Plin(k, τ)

]2

, (C.20)

〈δ3
θ0,lin
〉(τ) = 3[2(〈δ2

θ0,lin,a
〉(τ))2 − (1− µ)(〈δ2

θ0,lin,c
〉(τ))2+

3

2

∂〈δ2
θ0,lin,b

〉(τ)

∂lnθ0

. (C.21)

In the above equation we have defined

〈δ2
θ0,lin,X

〉(τ) =
1

2π

∫
dkkX(k, τ)W (k, θ0)2Plin(k, τ), (C.22)

with X that can be either a, b or c. We finally define the reduced skewness
parameter as

S3 ≡
〈δ3
θ0,lin
〉(τ)[

〈δ2
θ0,lin
〉(τ)

]2 . (C.23)

The original perturbation theory result can be obtained noting that in the
limit of a, b, c→ 1 we have δ2

θ0,lin,a
, δ2

θ0,lin,b
, δ2

θ0,lin,c
→ δ2

θ0,lin
; in this case, the

reduced skewness parameter assumes the following form:

S3 ≡
〈δ3
θ0,lin
〉(τ)[

〈δ2
θ0,lin
〉(τ)

]2 = 3(1 + µ) +
3

2

∂ln〈δ2
θ0,lin
〉(τ)

∂lnθ0

. (C.24)

The equations above for the third moments hold in the linear regime, but
they are usually extrapolated to the mild non-linear regime using predictions
of the non-linear power spectrum.

We note that there is up to a 30% difference between SC01 and GM12 fit-
ting formulae at small scales (∼ 5 arcmin for the first tomographic bin). This
is shown in Fig. C.1, along with the predicted third moments obtained with-
out implementing the small scales refinement (i.e., assuming the standard F2

kernel and the non linear power spectrum). In our main analysis we used the
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Table C.1: Values of the coefficients for the fitting formula described in Eqs. C.14, C.15
and C.16 from Scoccimarro & Couchman (2001) (SC01) and Gil-Maŕın et al. (2012)
(GM12).

coefficient SC01 GM12
α1 0.25 0.484
α2 3.5 3.740
α3 2 -0.849
α4 1 0.392
α5 2 1.013
α6 -0.2 -0.575
α7 1 0.128
α8 0 -0.722
α9 0 -0.926

fitting formulae from SC01 because they provide a better fit to our simula-
tions, but in order to be conservative, we included the difference between the
SC01 and GM12 models in our covariance in order to account for the small
scales modelling uncertainty of the skeweness. In Fig. C.2 (left panel) we
further show the level of bias we expect in the parameters posterior if the real
Universe followed a model different than SC01 for the third moments (which
implies the simulations we used to validate our modelling are not accurate
enough for validating third moments). For this test, we used a theory data
vector that combines second and third moments: it includes all the “auto”
moments of different tomographic bins (e.g.,[1,1],[1,1,1],[2,2],[2,2,2]) and the
“cross” moments (e.g.,[1,2],[1,1,2],[1,2,2]) and it assumes a fiducial scale cut
of (24h−1 Mpc). All the other nuisance parameters have been set to their
nominal value (zero). We prepared three data vectors using the SC01, the
GM12 and the standard non linear prediction for the third moments (NL).
The level of bias in the parameters posterior is around ∼ 1σ when analysing
the GM12 and NL data vector with the SC01 model. We note that a more
conservative scale cut for the third moments (50h−1 Mpc) would strongly
decrease the bias (right panel of Fig. C.2). This would also lower the con-
straining power of the combined second and third moments, but the gain
compared to using second moments only would still be considerable (∼ 30
per cent for Ωm, ∼ 10 per cent for S8).

Finally, the bottom panel of Fig. C.2 shows the change in the parameters
posterior when including (or not) the third moments modelling uncertainty
in the covariance; the change in the posterior obtained combining second
and third moments is minimal, for the scales used in the fiducial analysis.
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C.2 Mode-mode coupling matrices

We provide here mathematical recipes for the mode-mode coupling matri-
ces M used in § 7.2.1 to account for masking effects. Such matrices are
developed in the contest of pseudo power spectrum estimators (e.g, Wan-
delt et al. 2001; Brown et al. 2005; Hikage et al. 2011; Hikage & Oguri 2016).
In particular, we strictly follow here §2.1 of Hikage et al. (2011).

In the presence of a window function (in our case, the DES Y3 footprint)
K(θ, φ), the shear field assumes the following expression:

γ̄1(θ, φ) + γ̄2(θ, φ) = K(θ, φ)(γ1(θ, φ) + γ2(θ, φ)). (C.25)

When the shear field is transformed into its spherical harmonic counter-
part, it obtains an additional contribution due to the convolution with the
footprint mask:

ˆ̄γE,`m ± iˆ̄γB,`m =

∫
dΩ[K(θ, φ)(γ1(θ, φ) + γ2(θ, φ))]±2Y

∗(θ, φ). (C.26)

The quantities ˆ̄γE,lm and ˆ̄γB,lm are called pseudo E and B modes (as they
are convolved with the footprint mask) and their relation with the true E
and B modes can be written as:

ˆ̄γE,`m ± iˆ̄γB,`m =
∑
`′m′

(γ̂E,`m ± iγ̂B,`m)±2W``′mm′ , (C.27)

where ±2W``′mm′ is a convolution kernel

±2W``′mm′ =

∫
dΩ±2Y`′m′(θ, φ)K(θ, φ)±2Y

∗
`m(θ, φ) =

∑
`′′m′′

K`′′m′′(−1)m
√

(2`+ 1)(2`′ + 1)(2`” + 1)

4π
×(

` `′ `′′

±2 ∓2 0

)(
` `′ `′′

m m′ m′′

)
, (C.28)

with

(
` `′ `′′

m m′ m′′

)
Wigner 3j symbols and K`m =

∫
dΩK(θ, φ)Y ∗`m(θ, φ)

the harmonic transform of the window function. Defining

ĈEE
` =

1

2`+ 1

∑
m

|γ̂E,`m|2, (C.29)
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ĈEB
` =

1

2`+ 1

∑
m

γ̂E,`mγ̂
∗
B,`m, (C.30)

ĈBB
` =

1

2`+ 1

∑
m

|γ̂B,`m|2, (C.31)

we can write the masked (pseudo) spectra as the convolution of the true
spectra with a mode-mode coupling matrix:

Ĉ` =
∑
`′

M``′C`′ , (C.32)

where we introduced the vector C`(C
EE
` , CEB

` , CBB
` ). The mode-mode cou-

pling matrix M is expressed in terms ofMEE,EE
``′ , MBB,BB

``′ , MEB,EB
``′ , MEE,BB

``′ :

MEE,EE
``′ = MBB,BB

``′

=
2`′ + 1

8π

∑
`′′

(2`′′ + 1)K`′′ [1 + (−1)`+`
′+`′′ ]×(
` `′ `′′

2 −2 0

)2

, (C.33)

MEE,BB
``′ = MBB,EE

``′

=
2`′ + 1

8π

∑
`′′

(2`′′ + 1)K`′′ [1− (−1)`+`
′+`′′ ]×(
` `′ `′′

2 −2 0

)2

, (C.34)

MEB,EB
ll′ =

2`′ + 1

4π

∑
`′′

(2`′′ + 1)K`′′

(
` `′ `′′

2 −2 0

)2

, (C.35)

with K` = 1
2`+1

∑
mK`mK

∗
`m.

C.3 Constraints with data-compression

Our fiducial analysis has been carried out using a covariance matrix ob-
tained from multiple FLASK realisations (see § 7.3.1). FLASK is a log-normal
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Figure C.3: Measured compressed correlation matrix of second and third moments from
1000 FLASK simulations. A 12h−1 Mpc scale cut has been applied (see § 7.6.1 for a
definition of the scale cuts). The entries of the correlation matrix are shown with respect
to the parameter used to compress the data vector.

simulation, where the only required inputs are the desired auto and cross
power spectra of the convergence fields and the so-called log-normal shift
parameters (which effectively set the skewness of the simulated fields at
one scale, see e.g. Friedrich et al., 2018; Gruen et al., 2018). No additional
physics is encoded in the FLASK maps. This means that our FLASK realisa-
tions reproduce the correct 2nd moments set by our ΛCDM input spectra,
but has only limited accuracy in its 3rd moments. We have shown that this
does not strongly bias the recovery of input cosmological parameters once
applied to N-body simulations (see § 7.6.1).

In this section, we show how to obtain cosmological constraints from our
pipeline using the T17 covariance and compare them to the ones obtained
from the FLASK covariance, using a data compression algorithm (described
in § 7.5.2). We also validate the efficiency of the data compression algorithm
and show how it helps to reduce the noise in the inferred parameters caused
by the paucity of simulations used to estimate the covariance matrix.

All the tests shown in this section use a theory data vector that includes
all the “auto” moments of different tomographic bins (e.g.,[1,1],[1,1,1],[2,2],[2,2,2])
and the “cross” moments (e.g.,[1,2],[1,1,2],[1,2,2]), for a total of 10 combi-
nations for second moments and 20 combinations for third moments. De-
pending on the test, we show results from second moments, third moments
or the combination of the two. We use the fiducial scale cuts determined in
§ 7.7, of 20h−1 Mpc for second moments, 12h−1 Mpc for third moments, and
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Figure C.4: Posterior of Ωm and S8 for four different cases. Top left : posteriors ob-
tained using the uncompressed and compressed FLASK covariance, without applying any
corrections due to noise (Eqs. 7.37 and 7.38). Top right : posteriors obtained using un-
compressed FLASK covariance, with a number of corrections to account for the noise in
the estimated covariance matrix. “Hartlap” refers to the Hartlap et al. (2007) correction
(Eq. 7.37), “DS” refers to the Dodelson & Schneider (2013) correction (Eq. 7.38), while
“SH” refers to the Sellentin & Heavens (2016) likelihood (see text in Appendix C.3 for
more details). Bottom left : same as the top right panel, but for compressed data vectors.
Bottom right : posteriors obtained using the compressed FLASK and T17 covariances. 1000
FLASK simulations have been used for these tests.
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Figure C.5: This figure is the same as Fig. 7.8 but for a uncompressed data vector.
Upper panels: residuals (i.e., the difference between the measurement signal in a FLASK

simulation and the simulations mean value) of individual data points in units of their
expected standard deviation. We compare to a Gaussian with 0 mean and unit standard
deviation; we also compare to a Gaussian corrected by the first term of the Edgeworth
expansion of the likelihood (see text for more details). Bottom panels: Distribution of the
χ2 of each realization of the FLASK simulations, compared to a theoretical χ2 distribution.
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24h−1 Mpc when second and third moments are combined. For the data vec-
tor, a fiducial T17 cosmology is assumed, with nuisance and astrophysical
parameters (photo-z biases, multiplicative shear biases, intrinsic alignment
IA) assumed to be null, and no baryonic contamination. When estimating
parameters posterior, we further marginalise over nuisance parameters as
explained in § 7.2.1.

We show the compressed correlation matrix in Fig. C.3. The correla-
tion matrix has now 15 entries, as many as the number of parameters we
constrain in our analysis. Interestingly, the correlation between the differ-
ent elements of the compressed data vector reflects the correlation between
parameters. For instance, Ωm and σ8 show a significant correlation, as ex-
pected from Fig. 7.9. The anticorrelation between the mean shift δz and
the multiplicative shear biases m is due to the fact that the amplitude of
the moments depends on the mean redshift of the source distribution (see,
e.g., Bernardeau et al. 1997); due to our definition, a positive δz shifts the
mean of the distribution to lower redshift and lowers the amplitude of the
moments, while a positive m has the opposite effect.

We next perform here several tests to validate our compression algo-
rithm. First, we run two forecast chains using the compressed and uncom-
pressed FLASK covariance and compare the contours. This is shown in the
top left panel of Fig. C.4, for the Ωm and S8 parameters. In this first test,
we did not apply any correction for the noise in the inverse of the covariance
(Eqs. 7.37 and 7.38), as we are interested in validating the compression al-
gorithm only. The marginalised 1-D posteriors of Ωm and S8 have similar
width, showing that the data compression implemented is basically loss-
less. As a caveat, we remind the reader that we assume the likelihood to
be Gaussian, which in the case of the uncompressed data vector is only an
approximation (see below).

Second, we show in the top right panel of Fig. C.4 how the constraints
degrade once the uncertainties in the inverse of the covariance matrix are
taken into account. The Hartlap et al. (2007) and Dodelson & Schneider
(2013) corrections (Eqs. 7.37 and 7.38) noticeably enlarge the contours,
the net effect depending on the number of simulations used to estimate
the covariance matrix. We also show, for comparison purposes, how the
posteriors would look if the likelihood from Sellentin & Heavens (2016) was
used. Sellentin & Heavens (2016) argue that when the covariance matrix is
estimated from simulations, the likelihood is no longer Gaussian but rather
is described by an adapted version of a multivariate t-distribution, a fact not
taken into account by the Hartlap et al. (2007) correction. They suggest
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that marginalising over the true covariance produces a tighter posterior
close to the peak compared to the simple Hartlap et al. (2007) correction,
which according to Sellentin & Heavens (2016) overestimates its size. This
is confirmed by the top right panel of Fig. C.4. We note, however, that the
additional scatter in the parameters posterior encoded by the Dodelson &
Schneider (2013) correction is not accounted for in the Sellentin & Heavens
(2016) framework.

The lower left panel of Fig. C.4 is the same as the top right panel but
for the compressed data vector. The compression greatly reduces the noise
in the estimated covariance matrix and Eqs. 7.37 and 7.38 approach ∼ 1.
Also the Sellentin & Heavens (2016) likelihood approaches a multivariate
Gaussian, becoming almost indistinguishable from the no correction case.

Lastly, in the lower right panel of Fig. C.4 we show the contours obtained
using the compressed T17 covariance matrix. We expect the shape of the
posterior to be different when using the compressed T17 covariance and the
FLASK covariance in two ways. First, the cosmology of the T17 simulations is
slightly different from the FLASK one. Second, third moments should be more
accurately modelled in the T17 simulations as FLASK does not contain the
physics to model the third moments beyond the log-normal shift. Differences
in the widths between the two compressed covariances are smaller than 2
per cent, suggesting that the two factors considered above have a modest
impact.

Finally, we comment on the more Gaussian nature of the compressed
data vector compared to the uncompressed one. This is shown in Fig. C.5.
The residuals (i.e., the difference between the measurement signal in a FLASK

simulation and the simulations mean value) of the uncompressed data vector
appear much less Gaussian for the third moments and the combination of
second and third moments compared to what we found for the compressed
data vector in Fig. 7.8 (no significant difference in the distribution of the
residuals is seen when only second moments are used). We compute how
the distribution of residuals would look if the likelihood were not purely
Gaussian, by means of a multivariate Edgeworth expansion of the likelihood
(e.g., Amendola 1996):

L = G(x,C)[1 +
1

6
kijkx hijk + ...], (C.36)

with
hijk = (−1)3G−1(x,C)∂ijkG(x,C), (C.37)

where G(x,C) is the Gaussian part of the likelihood, x and C are the data
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vector and its covariance respectively, and kijkx = 〈xixjxk〉 is the third order
cumulant of the data vector (which can be measured in simulations). The
predicted distribution of residuals in Fig. C.5 obtained with the first term
of the Edgeworth expansion is in better agreement with the one measured
in FLASK simulations.

C.4 Full data vector and signal-to-noise

We show in Fig. C.6 the full data vector, including off-diagonal terms. The
total signal-to-noise ratio (defined as SNR ≡

√
dTC−1d), for a 24h−1 Mpc

scale cut, is 51.5, 10.4 and 66.3 for second, third and combination of second
and third moments respectively. If all the scales are considered (down to
3 arcminutes), the signal-to-noise ration increases to 59.3, 15.4 and 106.0.
Among the second moments bins, the 11, 22, 33 and 44 bins have signal-to-
noise ratio of 8.8, 13.3, 25.2, 24.5; as for the third moments, the 111, 222,
333 and 444 bins have signal-to-noise ratio of 2.1, 2.8, 4.6, 3.9. The signal-
to-noise ratio of the cross-moments is somewhat in between the values of
the corresponding auto-moments.

C.5 Fast emulator theory predictions

The theory prediction described in § 7.2.1 can be quite time-consuming due
to the large number of cross-correlations and integrations involved. In order
to speed up this calculation, we implemented an emulator (Heitmann et al.,
2006; Habib et al., 2007). Typically, emulators in the cosmology context are
used when an expensive calculation is needed in a large parameter space,
but the variation of the calculation over the parameter space is smooth.
A primary example is predicting the dark matter power spectrum given
cosmological parameters (Heitmann et al., 2009; Kwan et al., 2015). The
power spectrum is computed to high accuracy at a given number of points
in the cosmological parameter space and an interpolator is used to derive
the power spectrum at some arbitrary point in the parameter space.

In our case, the quantities we wish to emulate are the second and third
moments of the matter density field once the mask edges are accounted
for, namely 〈δ2

θ0,NL〉EE/BB(χ) and 〈δ3
θ0,NL〉EE/BB(χ), as a function of the

5 cosmological parameters under study and for a large number of (fixed)
redshifts. We first compute their values at specific points in our parameter
space, and then we build an interpolator that provides fast prediction at
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Figure C.6: Second and third moments data vector. The red line represents a theory
data vector (obtained assuming the fiducial values for the nuisance parameters and a
T17 cosmology) and the red shaded regions the 1-σ measurement uncertainty. Grey
shaded regions show the angular scales not included in the fiducial analysis.
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Figure C.7: Accuracy of the emulator for the second and third moments. We tested the
emulator using a validation sample of 500 points. Each entry of the histogram refers to
the mean relative discrepancy between the emulator predictions and the validation model
over all the smoothing scales and redshifts considered. The vertical dashed lines show
the error introduced by selecting only 15 principal components.
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Figure C.8: Accuracy of the emulator for the second and third moments as a function of
four cosmological parameters. We tested the emulator using a validation sample of 500
points. Each entry of the scatter plots refers to the mean relative discrepancy between the
emulator predictions and the validation model over all the smoothing scales and redshifts
considered. Training points are shown in grey.
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any point of the 5-parameter space (and as a function of redshift). We also
build a separate emulator for each smoothing scale considered. The fact
that such quantities are emulated at a fixed range of redshifts allow us to
compute the second and third moments of the convergence field for a given
tomographic bin after the emulation step, by integrating over the redshifts
and taking into account the lensing kernel (and other nuisance parameters).

To decide which points to use for building the interpolator, we sampled
our parameter space using a Latin hypercube (McKay, 1979), which is a
scheme that provides good space-filling properties. We sampled the space
delimited by the priors defined in Table 7.1, and chose 500 points. For each
point of the Latin hypercube, we predicted the second and third moments
of the dark matter density field (Eqs. 7.2, 7.3) with a resolution of δz =
0.01 up to redshift 4, for 12 equally logarithmic spaced smoothing scales
between θ0 = 0 arcmin and θ0 = 220 arcmin. For each smoothing scale,
we organised the predictions of our second and third moments in a matrix
of dimensionality nz × npoints = 400× 500. Since interpolating a 400× 500
matrix as a function of cosmological parameters would be impractical, we
further reduce the dimensionality using the singular value decomposition.
We define η = UBVT , where U has dimensionality nz×nz and V nz×npoints.
B is a diagonal matrix of singular values. We defined the basis vectors
Φ = 1√

nz
UB and weights ω =

√
nzV

T . Then, we kept only the first p < nz
principal components of our basis vectors:

〈δ2
θ0,NL〉EE/BB(χ(z),Ωm,Ωb, σ8, ns, h100) =

p∑
i=0

ωδ
2,θ0
i (Ωm,Ωb, σ8, ns, h100)Φδ2,θ0

i (χ(z)), (C.38)

〈δ3
θ0,NL〉EE/BB(χ(z),Ωm,Ωb, σ8, ns, h100) =

p∑
i=0

ωδ
3,θ0
i (Ωm,Ωb, σ8, ns, h100)Φδ3,θ0

i (χ(z)), (C.39)

where the basis and weights are different for the second and third moments
and depends on the smoothing scale. We found that setting p = 15 and
p = 45 retains most of the information in the moments (99.9 per cent and
99.7 per cent for second and third moments respectively), so we can neglect
the other components. The third moments require more components due to
the complex dependence on cosmological parameters at small scales.
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After the singular value decomposition, we are left to interpolate, as a
function of five cosmological parameters, 60 weight functions in total be-

tween ωδ
2,θ0
i and ωδ

3,θ0
i measured at 500 different points in our parameter

space. We opted for a Gaussian process (Rasmussen & Williams, 2006) inter-
polation scheme. A Gaussian process is a stochastic process where any finite
subset forms a multivariate Gaussian distribution. At each reconstruction
point x = (Ωm,Ωb, σ8, ns, h100) of our parameter space, the weights ωδ

2,θ0
i ,

ωδ
3,θ0
i are modelled as multivariate Gaussian distributions with a given mean

value and Gaussian errors. The latter is determined by a covariance function
k(x;x′) that correlates the function at different points. The covariance func-
tion depends on only two hyper-parameters (the amplitude and the typical
scale of the correlation) which are fixed during the training phase.

We tested the accuracy (defined as the mean relative discrepancy be-
tween the emulator predictions and the validation model over all the smooth-
ing scales and redshifts considered) of our interpolation scheme by training
and validating over two different sets of 500 points determined using two
different Latin hypercubes. The resulting accuracy is shown in Figs C.7
and C.8. The performance of the emulator is generally better than 1 per
cent. The recovery gets worse close the the edges of the priors. This is
particularly evident for σ8 and Ωm (Fig. C.8) as these two are the param-
eters to which our measurement is most sensitive. The emulator performs
slightly worse for the third moment, due to a more complex dependence on
the cosmological parameters. We note that Figs. C.7, C.8 report the mean
accuracy of the emulator across smoothing scales and redshifts. While for
the second moments the accuracy does not strongly depend on the smooth-
ing scales or redshift, we found that the emulator for the third moments
performs slightly worse at low redshift and intermediate scales, where the
accuracy is around ∼ 3 per cent, still well below observational uncertainties.
The speedup achieved by using the emulator is of two orders of magnitudes.

After predicting the masked second and third moments of the dark mat-
ter density field with the emulator, we took into account the lensing kernel of
the samples and the nuisance parameters as described in § 7.2.1. We checked
that the emulated theory data vector causes small variations in the χ2 with
respect to a theory data vector obtained without approximations. For the
fiducial cosmology, such variations are of the order of ∆χ2 ∼ 0.2− 0.4, the
exact value depending on the particular scale cut combination of second and
third moments considered. We also verified that the difference between the
maximum of the 1-D marginalised posterior of the cosmological parameters
obtained running an MCMC chain on an emulated theory data vector and

247



C.5. FAST EMULATOR
THEORY PREDICTIONS

APPENDIX C.

0.16 0.24 0.32 0.40 0.48
m

0.72 0.76 0.80 0.84
S8

0.16

0.24

0.32

0.4

0.48

m

Emulated 
data vector
True 
data vector

Figure C.9: Forecast posteriors for cosmological parameters, obtained with a theory data
vector and an emulated data vector (see § C.5). We marginalise over nuisance parameters
as explained in §7.5.3. Constraints with the second and third moments combined are
shown in the S8 − Ωm plane.

on a non-approximated one are much smaller than the parameters’ 1-σ con-
fidence intervals. This is shown in Fig. C.9, and the differences are at the
level of < 1.5 per cent for Ωm and < 0.3 per cent for S8 = σ8(Ωm/0.3)0.5.
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